

SECTION II

Working in a Reduced Gravity Environment: "A Primer"

Kenol Jules PIMS Project Scientist NASA Glenn Research Center

March 6th, 2001

03/06/2001

The reduced gravity acceleration environment of an orbiting spacecraft in a low earth orbit is a very complex phenomenon. Many factors contribute to form the overall environment. In general, it can be considered as made up of the following three components:

QUASI-STEADY: is composed of those accelerations that vary over long periods of time, typically longer than a minute for space-based platforms.

<u>VIBRATORY</u>: is composed of those accelerations that are harmonic and periodic in nature with a characteristic frequency.

TRANSIENT: is composed of those accelerations that last for a short period time, and are non-repetitive.

What is a *"reduced gravity environment"*?

Major properties

What is a *"reduced gravity environment"*?

Major properties

What causes these accelerations?

03/06/2001

Components of the Reduced Gravity Environment

WHAT DO ALL THESE MEAN TO YOU?

- The environment is <u>NOT</u> "zero-g"!
- Experiments may be affected by the reduced gravity environment
- This tutorial will explain to you what the environment is likely to be, how we measure it, how we interpret it, and will show you what impact the environment has had on some experiments.

Working in a Reduced Gravity Environment : "A Primer"

REDUCED GRAVITY ENVIRONMENT DESCRIPTION

Reduced gravity	Duration	Acceleration	Notes	NOTE
Facilities		Levels		
Drop Towers	< 10 seconds	10 ⁻³ g	NASA, Japan,	The acceleration level values
			Germany	listed in this table are <u>NOT</u> to
Parabolic Aircraft	15 – 25 seconds	$1.5 \times 10^{-2} \text{ g}$	~ 40 parabolas per	be used as a nominal value of
			campaign	the reduced gravity
Rockets	Up to 600	10 ⁻⁵ g	Various countries	environment of any specific
	seconds		D	platform. The environment is
SPACEHAB Module	Up to 16 days	$< 5.5 \times 10^{-1} \text{ g}$ (for the	Frequency range:	very dynamic in nature. They
		combined three	0.01 – 25 HZ	are listed here to illustrate
Speedab Module	Up to 16 days	axes	Eroquonov rongo.	the non-zero nature of the
(MPFSS)	Op to 10 days	$< 1.4 \times 10^{\circ}$ g (101 tile	$10.01 - 25 H_7$	The actual value for any of the
		axes)	0.01 - 25 112	I the actual value for any of the
Spacelab Module	Up to 16 days	$< 3x10^{-3}$ g (for the	Frequency range:	moment in time is frequency
		combined three	0.01 - 25 Hz	dependent (mission timeline
		axes)		activity dependent)
STS overall Quasi-	Up to 15 days	$< 1 \times 10^{-6} \text{ g}$	Frequency range:	
Steady environment			0.0 – 0.01 Hz.	
			Average values for	
			typical orbiter	
			attitudes	
STS overall vibratory	Up to 15 days	Tens to thousands	Depending on what	
environment		$\mu g_{\rm RMS}$	activity is taking	
STS avanall transiant	Un to 15 days	Tong of ug pook	Depending on what	
onvironment	Up to 15 days	I ens of µg peak	activity is taking	
			nlaca	
			place	1

SOME DEFINITIONS

Acceleration Measurement Systems

- OARE: Orbital Acceleration Research Experiment instrument which measures low frequency accelerations from DC up to 0.01 Hz
- MAMS: Microgravity Acceleration Measurement System instrument which measures acceleration levels to characterize the ISS reduced gravity environment provided to users. MAMS measures accelerations from DC to 1 Hz.
- SAMS: Space Acceleration Measurement System instrument which measures accelerations from 0.01 Hz to 100 Hz on Shuttle, Mir, and KC-135.
- **SAMS-II:** Second generation SAMS instrument which will measure accelerations from 0.01 Hz to 300 Hz on the ISS.
- **SAMS-FF:** SAMS for Free Flyers instrument for free flyers (e.g. sounding rockets), Shuttle, and KC-135 which measures linear and roll-rate accelerations. Measure accelerations from 0.01 to 300 Hz.

03/06/2001

SOME DEFINITIONS

- reduced gravity environment: an environment in which the effects of gravity are small compared to those we experience on Earth
- oscillatory: term used to describe vibratory disturbances with frequency content greater than 0.01 Hz
- transient: signals that are impulsive in nature; passing quickly into and out of existence
- quasi-steady: a signal which varies at a very low frequency, typically below 0.01 Hz

SOME DEFINITIONS

- Nyquist criteria: sampling rate must be at least twice that of the highest frequency contained in the signal of interest
- cutoff frequency (f_c): corner frequency in filter response; highest unfiltered frequency of interest
- sample rate (f_s): rate at which an analog signal is sampled (samples/sec)
- power spectral density: a function that quantifies the distribution of power in a signal with respect to frequency
- **spectrogram:** a 3-D representation of the power spectral density as a function of frequency and time

SAMPLE PLOTS INFORMATION

SAMS / II

SAMPLE PLOTS INFORMATION

OARE / MAMS

Working in a Reduced Gravity Environment : "A Primer"

SOME PLOT SAMPLES

Acceleration vs. Time

Cumulative RMS acceleration vs. Frequency

Power Spectral Density -- no spectral averaging

Power Spectral Density – with averaging

03/06/2001

ORBITER

- Body coordinate system
 - origin at vehicle center of mass

ORBITER

- Structural coordinate system
 - origin at External Tank tip

FLIGHT ATTITUDES

ORBITER

- Orbiter has two main attitudes
 - Local vertical / local horizontal (Earth oriented)
 - Inertial (quite often sun oriented)

-e.g. -XLV / +YVV

REFERENCE FRAME

ORBITER

- Fixed frame of reference determines sense of observed acceleration
 - Inertial reference frame: frame fixed with respect to inertial space
 - Science reference frame: frame fixed with respect to vehicle

ISS

Integrated Truss Segment S0 Coordinate System

Туре

Right-Handed Cartesian, Body-Fixed

Description

This coordinate system defines the origin, orientation, and sense of the Space Station Analysis Coordinate System.

Origin

The YZ plane nominally contains the centerline of all four trunnion pins. The origin is defined as the intersection of two diagonal lines connecting the centers of the bases of opposite trunnion pins, running T1 to T3 and from T2 to T4.

Orientation

X_{so}

- **X_{S0}**: The X-axis is parallel to the vector crossproduct of the Y-axis with the line from the center of the base trunnion pin T2 to the center of the base trunnion pin T3, and is positive forward
- Yso: The Y-axis is parallel with the line from the center of the base of trunnion pin T2 to the center of the base of trunnion pin T1. The positive Y-axis is toward starboard.

ZS0: The Z-axis completes the RHCS

MEIT-2001 / Section II / Page 20

03/06/2001

Туре

Right-Handed Cartesian, Body-Fixed

Description

This coordinate system is derived using the Local Vertical Local Horizontal (LVLH) flight orientation. When defining the relationship between this coordinate system and another, the Euler angle sequence to be used is a yaw, pitch, roll sequence around the Z_A , Y_A , and X_A axes, respectively.

Origin

The origin is located at the geometric center of Integrated Truss Segment (ITS) S₀ and is coincident with the S₀ Coordinate frame.

Orientation

- X_A: The X-axis is parallel to the longitudinal axis of the module cluster. The positive X-axis is in the the forward direction
- Y_A: The Y-axis is identical with the So axis. The nominal alpha joint rotational axis is parallel with YA. The positive Y-axis is in the starboard direction.
- **Z**_A: The positive Z-axis is in the direction of nadir and completes the right-handed Cartesian system (RHCS).

MEIT-2001 / Section II / Page 21

ISS

SPACE STATION ANALYSIS COORDINATE SYSTEM

03/06/2001

Туре

Right-Handed Cartesian, Body-Fixed

Description

This coordinate system is derived using the Local Vertical Local Horizontal (LVLH) flight orientation.

Origin

The datum point is located at the origin of the Space Station Analysis Coordinate System frame. The origin of the Space Station Reference Coordinate System is located such that the datum point is located at: $X_R=100$, $Y_R=0$, and $Z_R=100$ meters

Orientation

- X_R: The X-axis is parallel to the X_A. The positive X-axis is in the forward direction
- **Y**_R: The Y-axis is coincident with the nominal alpha joint rotational axis, which is parallel to Y_A. The positive Y-axis is in the starboard direction.
- **Z**_R: The positive Z-axis is parallel to Z_A and is in the direction of nadir and completes the rotating right-handed Cartesian system.

MEIT-2001 / Section II / Page 22

ISS

SPACE STATION REFERENCE COORDINATE SYSTEM

ISS

SPACE STATION BODY COORDINATE SYSTEM

Туре

Right-Handed Cartesian, Body-Fixed

Description

When defining the relationship between this coordinate system and another, the Euler angle sequence to be used is a yaw, pitch, roll sequence around the Z_{SB} , Y_{SB} , and X_{SB} axes, respectively

Origin

The origin is located at the Space Station center of mass.

Orientation

- **X_{SB}**: This axis is parallel to the X_A axis. Positive X_{SB} is in the forward flight direction.
- **YSB**: This axis is parallel to the Y_A. Positive Y_{SB} is toward starboard.
- ZSB: This axis is parallel with the Z_A. Positive Z_{SB} is approximately toward nadir and completes the right-handed system: X_{SB}, Y_{SB}, Z_{SB}.

03/06/2001

PINS ------

COORDINATE SYSTEMS

ISS

Туре

Right-Handed Cartesian, Body-Fixed to the Y_{LAB} Pressurized Module

Origin

The origin is located forward of the pressurized module such that the center of the bases of the aft trunnions have X_{LAB} components nominally equal to 1000.000 inches.

Orientation

- XLAB: The X-axis is perpendicular to the nominal aft CBM interface plane and pierces the geometric center of the array of mating bolts at the aft end of the pressurized module. The positive X-axis is toward the pressurized module from the origin.
- **Y_{LAB}**: The Y-axis completes the right-handed Cartesian system (RHCS).
- **ZLAB**: The Z-axis is parallel to the perpendicular line from the X-axis to the center of base of the keel pin, and positive in the opposite direction as shown.

UNITED STATES LABORATORY MODULE COORDINATE SYSTEM

∮Ζ_{ι ab}

FLIGHT ATTITUDES

ISS

The basic flight attitude for ISS is called **XVV Z** Nadir. The vehicle design is optimized for this attitude. The **XVV** attitude:

- places the most modules in the microgravity volume
- supports altitude reboosts
- service vehicle dockings
- minimizes aerodynamic drag

The ISS is designed to tolerate deviations from perfect XVV Z Nadir of +/- 15 degrees in each axis. This envelope was expanded to -20 deg in pitch.

Available Reduced Gravity Carriers / Facilities

- STS Orbiters
- International Space Station (ISS)
- Sounding Rockets
- Parabolic Flight Aircraft (KC-135)
- Free-Flyers
- Drop Towers
- Microgravity Emission Lab (MEL)

Experiment Location and Orientation

- Proximity to carrier / vehicle center of mass
 - sensitivity to quasi-steady variations
- Proximity to other equipment
 - sensitivity to vibration sources
- Alignment
 - sensitivity to quasi-steady acceleration direction

Carrier Attitude

- Issues related to experiment location
 - gravity gradient effects
- Issues related to experiment orientation
 - design attitude that points experiment in desired direction
- Sensitivity to quasi-steady variations with time
 - atmospheric drag effects
 - local vertical / local horizontal attitudes versus inertial attitude

Accelerometer Selection

- Frequency Range
 - cutoff frequency based on experiment sensitivity
 - sampling rate and filter characteristics specified by accelerometer system team to provide frequency selected by experimenter
- Location and Alignment
 - close to experiment sensitive location
 - mounting technique
 - away from sources which may disturb accelerometer and mask disturbances of interest
 - knowledge of sensor orientation relative to experiment axes

Mission / Experiment Timeline

If at all possible, schedule your experiment operations to avoid any activities which might negatively impact it. Keep the following points in mind:

- Experiment sensitivity to acceleration sources
 - quasi-steady, vibratory and transient
- Crew exercise
- Crew activity
- Thruster activity
- Other experiment operations
- Venting

03/06/2001

ISS Microgravity Requirements

Summary

Frequency (Hz)

Working in a Reduced Gravity Environment : "A Primer"

EXPERIMENT SENSITIVITY ASSESSMENT

03/06/2001

Working in a Reduced Gravity Environment : "A Primer"

Fundamental Physics

Quasi-steady

 A large quasi-steady level will destroy sample uniformity of critical fluid

Vibratory

 Primary concern is vibratory heating of sample and destruction of sample uniformity

Transient

 Primary concern is vibratory heating of sample and destruction of sample uniformity

Rationale

 Low temperature physics experiments rely on establishment of highly uniform sample in microgravity

 NOTE: Many of these experiments are expected to be operated on the JEM-EF

Combustion Science

Quasi-steady

• Not a major concern (10⁻⁴ g_o)

Vibratory

- Typically low acceleration levels at low frequencies (< 1 Hz) disturb experiments
- Most experiments are above the ISS requirement curve but some are below the expected environment
- Low frequency g-jitter has been observed repeatedly to affect the combustion characteristics of a variety of flames, e.g., candle, gas jet, flame balls, etc.

ref: Dr. H. Ross/NASA LeRC

Transient

 Tolerable for most experiments with time and magnitude restrictions on the disturbance

Rationale

- · Microgravity conditions allow:
 - isolation of gravity-driven mechanisms;
 - influence of transport phenomena
 - creation of symmetry and/or boundary & initial conditions
 - new diagnostic probing or testing of similitude
- Microgravity environment has attracted widespread external peer advocacy for combustion science in space

Biotechnology

Quasi-steady

Not a major concern (10⁻³ to 10⁻⁴ g_o)

Vibratory

 Impact at higher frequencies of the desired operating level

Transient

 Primary concern is for large scale accelerations, such as Orbital Maneuvering System engines and crew disturbances

Rationale

 Large disturbances cause nucleations to occur in multiple sites destroying single crystal formation

Fluid Physics

Quasi-steady

 Quasi-steady accelerations disturb most fluid experiments (2X10⁻⁶ g_o)

Vibratory

- Mid-range frequencies of expected environment will disturb fluid free surface experiments
- Some experiments require environment at lower levels than the ISS requirements curve e.g. Thin Film Fluid Flows at Menisci
- Surface Tension Driven Convection Experiment experienced surface distortion due to g-jitter frequently throughout the USML-2 mission

ref: Dr. S. Ostrach/CWRU

Transient

 Transients disturb fluid experiments with lower viscosity fluids

Rationale

 Accelerations above a threshold cause interface instability, density settling, and density-driven convection & mixing

MEIT-2001 / Section II / Page 37

03/06/2001

Working in a Reduced Gravity Environment : "A Primer"

Materials Science

Quasi-steady

- Some samples and processes require very low quasi-steady acceleration levels (a < 0.1 micro-g) e.g., Stoke's settling, Bridgman growth, Float zone
- Residual acceleration direction and stability are important factors for crystallization processes
- A Crystal Growth Furnace sample was withdrawn from USML-2 due to a change in Orbiter attitude just before launch ref: Dr. S. Lehoczky/NASA MSFC

Vibratory

 Disturbances in various frequency ranges disturb experiments involving molten samples, suspended samples, etc.

Transient

- Some processes are very susceptible to transients such as thruster firings
- MEPHISTO (USMP-1 & USMP-3) experienced effects which lasted minutes from single thruster firings (0.01 g for 10 - 25 seconds)

Rationale

 Accelerations above a threshold cause thermosolutal convection and interface instability

03/06/2001

03/06/2001

Experiment Type	Frequency Range	Measurement Level
Biotechnology	QS – 10 Hz	100 µg and above
Fluid Physics	QS – 300 Hz	1 µg to 1 mg
Combustion Science	QS – 50 Hz	10 µg and above
Fundamental Physics	QS – 180 Hz	0.1 µg and above
Material Science	QS – 300 Hz	0.01 µg and above

Working in a Reduced Gravity Environment : "A Primer"

STS ASCENT PROFILE

03/06/2001

PINS HOROMANT A

STS ASCENT PROFILE

03/06/2001

STS ASCENT PROFILE

03/06/2001

STS LANDING PROFILE

PIMS POLICIAL DE LA COMPANY

Working in a Reduced Gravity Environment : "A Primer"

STS LANDING PROFILE

PIMS ------

Working in a Reduced Gravity Environment : "A Primer"

STS LANDING PROFILE

03/06/2001

PIMS PULS

Working in a Reduced Gravity Environment : "A Primer"

STS LANDING PROFILE

03/06/2001

OVERALL SUMMARY

- The reduced gravity environment is not "zero-g" or even "zero-acceleration". It is dynamic.
- The environment may (and will) influence the results of a science experiment.
- Analyses and/or tests should be performed before flight to investigate the sensitivity of an experiment to the reduced gravity environment.
- Environments of past missions should be considered in planning future experiments.
- Experiment teams should be concerned about what disturbances they may be causing to the environment with (for example) moving parts from their experiments or / and required crew actions.

REFERENCES

- DeLombard, R.: "Compendium of Information for Interpreting the Microgravity Environment of the Orbiter Spacecraft." NASA TM-107032, 1996.
- Rogers, M. J. B., Hrovat, K., McPherson, K., Moskowitz, M. E., and Reckart, T.: Accelerometer Data Analysis and Presentation Techniques, NASA TM-113173, September 1997.
- DeLombard, R.; McPherson, K.; Hrovat, K; Moskowitz, M.; Rogers, M. J. B.; and Reckart, T.: Microgravity Environment Description Handbook, NASA TM-107486, 1997.
- Sutliff, T. J.: Requirements and Development of an Acceleration Measurement System for International Space Station Microgravity Science Payloads, NASA TM-107484, June 1997.
- "International Space Station Flight Attitudes" D-684-10198-06 DCN-002, Dec. 1999.
- Robert C. Rhome.: "Baseline Microgravity Requirements for Scientific Research on the International Space Station", June 1996.
- "System Specification for the International Space Station", SSP 41000E, July 1996.
- Melissa J. B. Rogers.: "Planning Experiments for a Microgravity Environment", Sept. 1998.
- "Space Station Reference Coordinate Systems", SSP 30219, Revision E, Nov. 1998.
- "Microgravity Control Plan", SSP 50036RB, March 2000.
- Bao, Nguyen.: "STS-92 Payload Bay Flight and Analytical Ascent Data Assessment" MSAD-01-0140, Jan. 2001, Lockheed Martin Space Operation

03/06/2001