

James C. Fox OARE Program Manager Canopus Systems Inc. 2010 Hogback Rd., Suite 3 Ann Arbor, MI 48105

Presentation to: 4th Annual Microgravity Environment Interpretation Tutorial Date: 6 March, 2001

6 March, 2001

Canopus Systems Inc.

- To design, develop and implement, on the Shuttle Orbiter, a sensitive triaxial accelerometer system which will:
- Provide accurate measurement data of aerodynamic acceleration along the Orbiter's principal axes in the free molecular flow flight regime at orbital altitudes and in the transition regime during reentry.
- Accurately measure low-frequency (1 to 10⁻⁶ Hz), nanogravity on-orbit acceleration perturbations due to structural vibration noise produced by on-board crew activities, thruster jet firings, cabin atmospheric leaks, and water/waste dumps.
- Measure momentum transfer effects such as gravity gradient, in-plane and out of plane motion, APU exhaust and other venting forces giving rise to a residual acceleration component.

Canopus Systems Inc.

- Provide Space Shuttle on-orbit linear acceleration measurement in the low frequency spectrum
- Developed to measure on-orbit atmospheric drag (100's of nano-g's) and reentry drag
- Measures nano-g level low frequency signals (below 1 Hz) in noisy vibration environment
- Requires high accuracy and good sensor drift and linearity characteristics to separate components in the measured residual acceleration vector
- Currently utilized to characterize Microgravity Science Applications requirements for
 - Directional solidification crystal growth
 - Semi conductor crystal growth
 - Protein crystal growth
 - Fluids transfer, surface and mixing properties
 - Microgravity combustion physics

- Dynamic Range:
 - X axis: 3.1 nano-g to 10,000 micro-g
 - Y & Z axes: 4.6 nano-g to 25,000 micro-g
- Bandwidth: DC to 1 Hz where "DC" is at least as low as 10⁻⁵ Hz
- Accuracy: 20 nano-g on C range
- Linearity: 0.1%
- On-Orbit calibration for temperature/drift compensation
- High disturbance rejection, primarily just above the bandpass
- Data sampling at 10 sps
- Data storage: 4 Mbyte on instrument; unlimited at 32Kbps on external tape recorder

Canopus Systems Inc.

Sketch of the OARE System

Canopus Systems Inc.

OARE Flight Assembly

6 March, 2001

Canopus Systems Inc.

Miniature ElectroStatic Accelerometer (MESA)

6 March, 2001

Canopus Systems Inc.

Normal Data Collection:

- 10 sps collection and transmittal to Spacelab HRM and PTR
- Internal trimmed mean filtering and storage every 25 sec.
- Temperature of OSS and OIS to high resolution
- Sensor automatic range control
- Bias Calibration: table and sensor control
- Critical sequence timing
- Trimmed mean filter data storage
- Scale Factor Calibration: table and sensor control
- Critical sequence timing
- Raw data storage

Mode and Logic Control:

launch

normal

recapture

6 March, 2001

quiet (cmd)

Canopus Systems Inc.

reentry (cmd)

shutdown

- System Bias calibrations provide measurement of actual sensor drift due to temperature, electronics, etc.
- During data measurement the sensor output consists of signal plus bias drift
- Actual bias data utilized to construct bias model as a function of time, temperature level, temperature gradients and environmental noise
- Over mission time, statistical models provide good estimates of bias history
- Scale factor calibrations performed by utilizing different slew rates
 (ω) to produce a calibrated acceleration signal (ω²r)
- Velocity servo controls the commanded slew rate of 0.1% accuracy
- OARE System provides high flexibility of interactive calibration control via use of adaptation parameters (frequency, duration, type, delays, rate level, etc.)

Canopus Systems Inc.

GENERAL BIAS CONSIDERATIONS

• Measured quasi-steady acceleration (A) at each sampling period is derived by the instrument model where

 SF_C = calibrated scale factor multiplier

 SF_N = nominal scale factor

CTS = measured number of digital counts and

BIAS = Computed number of sensor bias counts

 $A = -SF_{C} * SF_{N} (CTS - 32768 - BIAS)$

- At low acceleration levels, the bias is the major source of error in acceleration measurements.
- OARE measures or estimates the instrument bias by taking trimmean measurements with the accelerometer at normal orientation (1) and at inverted orientation (2) at a time separation of about 85 seconds apart.
- If the input acceleration remains constant, then the bias measurement is the true instrument bias; If the acceleration changes, then these changes in acceleration generate a bias measurement error.

 $BIAS_{M} = (CTS_{1} + CTS_{2})/2 - 32768 + (A_{1} + A_{2})/(SF_{C}*SF_{N})$, Where

 $A_2 = -A_1$ if Input Acceleration Remains Constant.

6 March, 2001

Canopus Systems Inc.

OARE X-AXIS BIAS FITS ON STS-73, NDOF =157 Chi-Sq =242, StDev of fit = 74.6 Counts

OARE X-AXIS C-RANGE BIAS MEASUREMENTS AND FIT ON STS-73

6 March, 2001

Canopus Systems Inc. MEIT-2001 / Section 6 / Page 11

- Earlier approximate 12% differences between ground and on-orbit calibrations are explained by extra ground test capacitance.
- Ground calibrations have been repeatable to 1% over 3 years.
- Ground and on-orbit calibrations now agree to within about 2% at ambient
- At 1 μ G, this yields an error of about 20 nG.
- An on-orbit scale factor calibration may not be required if accuracy requirements are about 50 nG or 2% of reading, whichever is greater.

Canopus Systems Inc.

STS-62 Body Modeled/Empirical Data at OARE

Acceleration Model Reference: Microgravity Environment for AADSF, B. Matisak, MGMG#13, Sept. 1994

STS-62 X-BODY MODELED/EMPIRICAL DATA AT OARE, -XLV/-ZVY (0° P)

6 March, 2001

Canopus Systems Inc.

OARE Axis and Range	STS 65 1 6-5 or (nano-g)	STS 62 Error (nano-g)
X-C	48	14
Y-C	24	15
Z-C	14	15

Estimated Systematic Bias Errors on STS 65 are 20 nano-gs.

Estim ated Scale Factor and Linearity Errors are 1-2% of reading.

(10 - 20 nano-gs at 1 m icro-g)

OverallEstimated Accuracy on OARE Measurements at One Micro-g Acceleration

OARE Axis and Range	STS 65 Error (nano-g)	STS 62 Error (nano-g)
Х-С	50-60	30-40
Ү-С	35-45	30-40
Z-C	30-40	30-40

- Over 70 adaptation parameters can be selected for optimal OARE performance on a per-mission basis:
- Ranging: used to control down-ranging and up-ranging for each sensor axis independently
- Calibration: setting the maximum time intervals between calibrations in the various modes
- Engineering Data: sets the interval for collection of voltage and temperature data
- Trimmed Mean Filter: assigns control parameters to the digital filter and determines the input data sample size to be filtered per mode/activity
- Positioning: positions the inner and outer RTA gimbals for standard data collection and for reentry data collection
- Background: determines sample size and period to collection stored background acceleration data (sampled raw data)
- Reenter: reserves EEPROM memory block for reentry data
- Quiet: sets an Activity-Inhibit time span of quiet mode and modifies calibration sequence

Canopus Systems Inc.

Input:

Adaptation Data - controls operation of Flight Data collection per mission objectives. Output:

Control^t - Logs key values required to continue after power interruptions

Γ	Normal X,Y, & Z	<u>7</u> -	Logs results of Trim Mean Filter (TMF) processing. Includes Bias data and low- resolution instrument temperature.
S C I	Processed SF	-	Logs results of TMF processing of Scale Factor calibrations. (May not exist if Adaptation directs raw output.)
E N	Raw SF	-	Records raw Scale Factor data. (May not exist if Adaptation file directs Processed SF output.)
E	Raw	-	Background raw data snapshots. Includes high resolution Instrument temperature. (Same format as telemetry.)
L	Reenter	-	Raw data throughout Reentry phase in separate file.
Γ	Temperature	-	Instrument and other subassembly temperatures; low resolution.
E N G	Status Log	-	Logs key state changes and table movement events.
	Error Log ^t	-	Logs detected errors.
L	Miscellaneous	-	Logs subsystem voltages, currents, and temperatures.

^t = Text files, all others are binary.

OARE Installed on Columbia Cargo Bay Deck

6 March, 2001

Canopus Systems Inc.

PREVIOUS OARE FLIGHTS

1.	STS-40	SLS-1	June 91	Aerodynamic Research		
2.	STS-50	USML-1	June 92	Aerodynamic Research		
3.	STS-58	SLS-2	Oct. 93	Aerodynamic Research		
4.	STS-62	USMP-2	March 94	Microgravity Sciences		
5.	STS-65	IML-2	July 94	Microgravity Sciences		
6. via	STS-73 HRM)	USML-2	Oct. 95	Microgravity Sciences(NRT Data		
7. Tetł	STS-75 ler)	USMP-3	Feb. 96	Microgravity Sciences (Lost		
8.	STS-78	LMS-1	June 96	Life/Microgravity Sciences		
9.	STS-83	MSL-1	April 97	Life/Microgravity Sciences		
10.	STS94	MSL-1R	July 97	Life/Microgravity Sciences		
11.	STS87	USMP-4	Nov 97	Life/Microgravity Sciences		
PLANNED OARE FLIGHTS						

12. STS107 Research July 01 Life/Microgravity Sciences
6 March, 2001Canopus Systems Inc.MEIT-2001 / Section 6 / Page 19

- **1. OARE Functional Block Diagram**
- 2. Spare OARE Sensor Subsystem Line Replaceable Unit
- 3. OARE Sensor/Table Assembly
- 4. Rotary Table Assembly Characteristics
- 5. Comparison of OARE X-Axis Scale Factor Calibrations
- 6. OARE Software Overview

OARE Functional Block Diagram

6 March, 2001

Canopus Systems Inc.

Spare OSS LRU

6 March, 2001

Canopus Systems Inc.

OARE Sensor/Table Assembly

6 March, 2001

Canopus Systems Inc.

<u>Design</u>

- Brushless d.c. servomotor drives each of two gimbals
- 16 bit position encoder for bias calibrations
- 10 controlled rate slews for scale factor cals
- Computer controlled servo loop and reference ramp generator

Key Performance Requirements:

- Reposition and hold table within 30 arc seconds
- Slew between two positions with rate stability within 0.1%
- +/- 350 degrees of travel, two axes
- Acceleration/deceleration within 150 msec.
- Meet all requirements with 10 rates from 0.0970 to 2.0 rad/sec.

6 March, 2001

Canopus Systems Inc. MEIT-2001 / Section 6 / Page A.4

COMPARISON OF OARE X-AXIS (BODY X-AXIS) SCALE FACTOR CALIBRATIONS NEAR AMBIENT

Canopus Systems Inc.

OARE Software Overview

Flight System	Ground Support	Simulation	Analysis Support
System Software BIOS - Custom I/O ROM Drive - DOS3 + utilities Plight Data Collection Ground Alignment Test Diagnostics RTA/OSS Performance Level Table - Test Support * RTA Test	 Ground Support Program Adaptation file prep. Flight System Test Terminal Emulation Flight S/W Instal File Transfer Quick-Look Review/Print * Adaptation File Print 	 RTA/OSS Simulator supports development and accept. testing of Flight S/W. * History File Formatter 	Binary to text conversion for: * Normal Data * Bias Data (subset of Normal) * Raw SF Data * Special Raw SF * Raw Data (also Reenter & Ground Alignment) * Temperature * Miscellaneous

Key

№ Major S/W item - formal specs & revisions control

- Critical Support S/W item some specs, revisions control
- * Support S/W source code revision documentation