

Section 10

Reduced Gravity Environment of

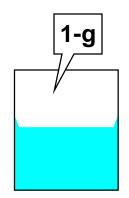
Ground-based Facilities

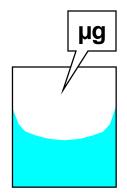
Richard DeLombard Microgravity Environment Discipline Scientist NASA Glenn Research Center

MEIT-01 / Section 10 / Page 1

Topics for Discussion

- Ground-based facilities
 - 2.2 Second Drop Tower, NASA GRC
 - Zero Gravity Research Facility, NASA GRC
 - Materials Science Drop Tube, NASA MSFC
 - ZARM Drop Tower, University of Bremen, Germany
 - JAMIC Drop Tower, Japan
- Accelerometer systems used to measure the environment
 - SAMS-FF (SAMS-Free Flyer)
 - ZARM accelerometer




Drop Towers & Tubes

- Microgravity condition due to free fall
 - Gravity effects when a force tries to disturb free fall
 - For example, a beaker holding a fluid exerts force on fluid
 - In free fall, beaker is falling with the fluid and surface tension & capillary forces are 'revealed'

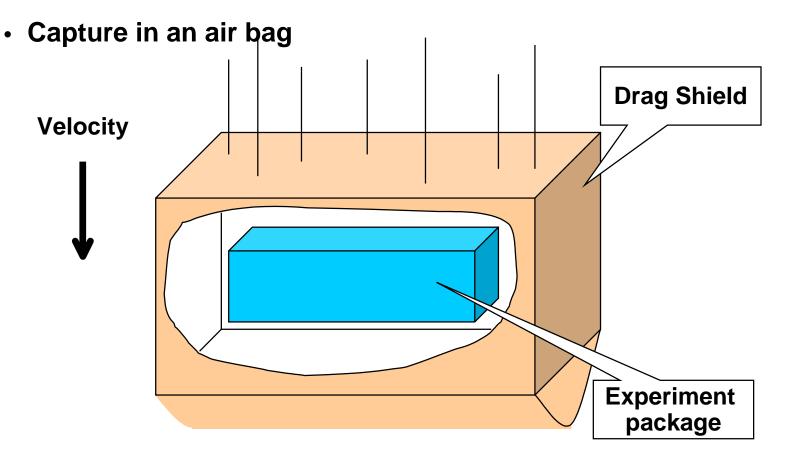
• Drop towers attempt to minimize external forces

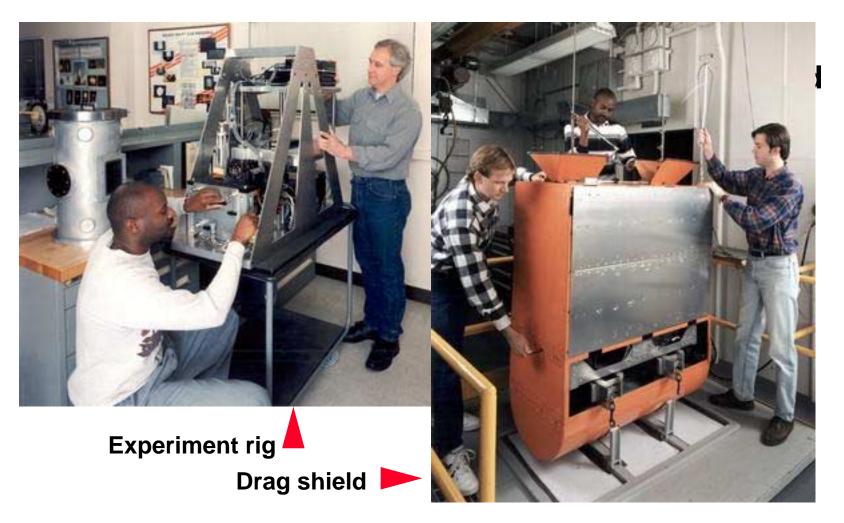
- Keys for a 'quiet' drop
 - Smooth release mechanism to minimize vibration
 - Structural relaxation depends on design of carrier and experiment
 - Moving parts dynamically balanced
- Air drag is a large external force
 - Steady force which gradually increases with increasing velocity
 - Several mechanisms are used to counteract air drag

Air Drag Reduction

- Air drag is a large force in a microgravity drop tower
 - Force is proportional to square of velocity

$$D = \frac{1}{2} \rho v^2 A C_d$$


- Methods of drag reduction
 - Drag shield
 - Experiment package surrounded by free falling container
 - Vacuum operation
 - Evacuate the chamber in which the experiment is dropped
 - Drag force compensation
 - Apply compensating force to experiment carrier


Drag Shield

• NASA GRC 2.2 Second Drop Tower uses a drag shield

MEIT-01 / Section 10 / Page 6

Vacuum Operation

- Vacuum drop towers include:
 - Zero Gravity Research Facility at NASA GRC
 - Capture in foam pellet container
 - ZARM facility at University of Bremen, Germany
 - Capture in foam pellet container
 - Materials Science Drop Tube, NASA MSFC
 - Capture on padded surface

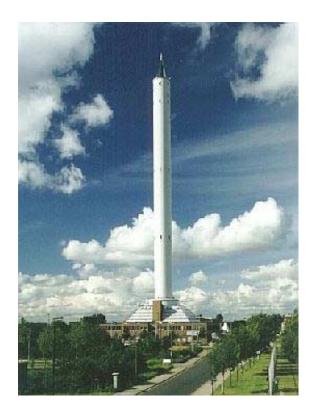
Experiment capture in Zero Gravity Research Facility

ZARM tower exterior

MEIT-01 / Section 10 / Page 7

Drag Force Compensation

- Japan Microgravity Center
 - Inner & outer capsule (i.e. drag shield)
 - Vacuum drawn between inner & outer capsules
 - Acceleration added to outer capsule for drag compensation
 - Cold-gas jet
 - 10 seconds of microgravity with 10⁻⁵ g
 - Capture accomplished with air pressure then mechanical brake

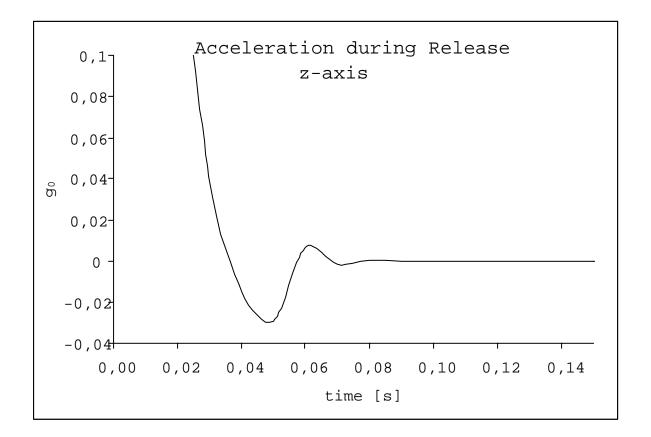


Drop Tower Comparison

•	NASA GRC 2.2 Second Drop Tower		
	 2.2 seconds 	24.1 m	10 ⁻⁴ g
•	NASA MSFC Drop Tube		
	4.6 seconds	105 m	10 ^{- 5} g
•	ZARM Drop Tower		
	 4.74 seconds 	123 m	10 ^{- 5} g
•	 NASA GRC Zero Gravity Research Facility 		
	 5.18 seconds 	145 m	10 ⁻⁵ g
•	Japan Microgravity	Center	
	10 seconds	490 m	10 ⁻⁵ g

Acceleration Environment

- Major 1-g transition to sub-milli-g level
 - Figures 10-1 and 10-2
- Vibrations from release mechanism
- Vibrations due to structural 'relaxation'
 - Figure 10-1
- Vibrations from equipment operation
 - Figure 10-3
- High level deceleration at initiation of capture
 - Figure 10-4



References

- Zero Gravity Research Facility
 - http://zeta.lerc.nasa.gov/facility/zero.htm
- 2.2 Second Drop Tower
 - http://zeta.lerc.nasa.gov/facility/_DTOWER.HTM
- ZARM Drop Tower
 - http://www.zarm.uni-bremen.de/main.htm
 - ZARM Drop Tower Bremen Users Manual, Version 28, April 2000
- JAMIC Drop Tower
 - http://www.jamic.co.jp/ENG/JAMIC/3.html
- MSFC Materials Science Drop Tube
 - http://science.msfc.nasa.gov/ssl/msad/dtf/test/tube1.htm
- General Summary
 - http://microgravity.msfc.nasa.gov/NASA_Carrier_User_Guide.pdf

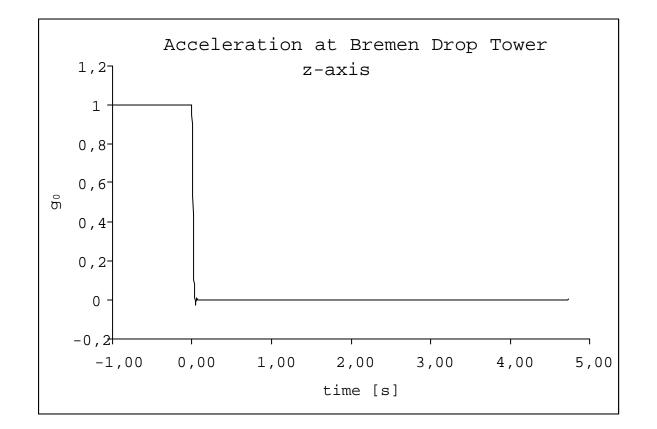


Figure 10-1: Acceleration level at time of release (ZARM)

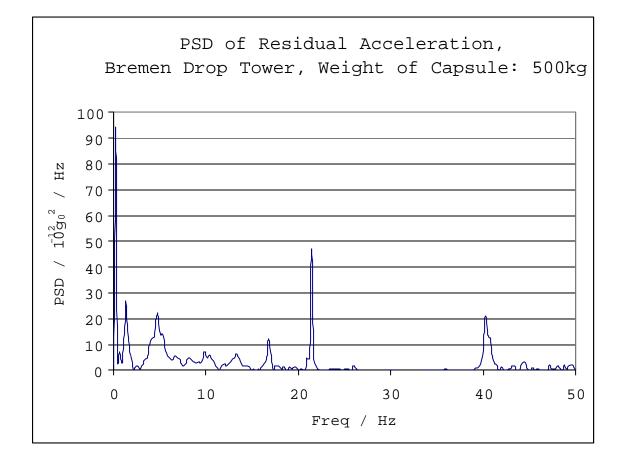


Figure 10-2: Acceleration level through drop event (ZARM)

Figure 10-3: Power Spectral Density plot during drop (ZARM) (note: release disturbances not included)

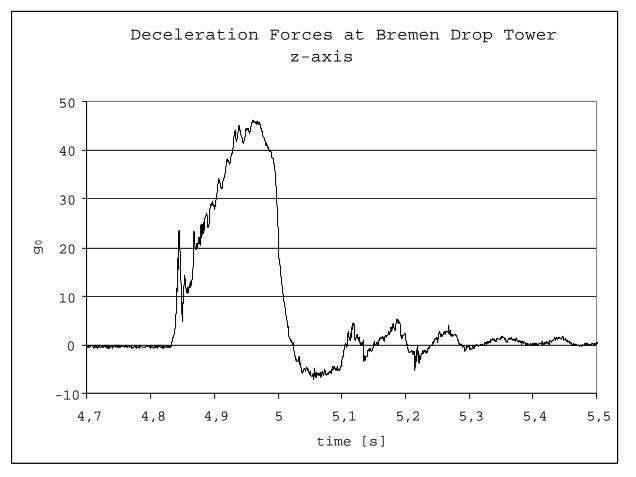


Figure 10-4: Deceleration at capture (ZARM)