

Section 14: PIMS International Space Station Operations

Kevin M. McPherson PIMS Data Analyst NASA Glenn Research Center

MEIT-2001 / Section 14 / Page 1

3/7/2001

PIMS Functions During Experiment Life Cycle

Space Acceleration Measurement System-II

- Provide distributed measurement of the vibratory and transient acceleration environment (0.01 ≤ f ≤ 400 Hz) on the ISS in support of various microgravity payloads
- Components
 - Control Unit
 - Responsible for data and command routing
 - Remote Triaxial Sensor (RTS) System
 - Up to Ten RTS Electronics Enclosures (EE's)
 - Up to Two RTS Sensor Enclosures (SE's) per EE
- Flight 6A configuration and operations
 - Three EE's and 5 SE's
 - Real-time data downlinked from the ISS

Microgravity Acceleration Measurement System

- Measure the ISS quasi-steady acceleration (f \leq 0.01 Hz) and the ISS vibratory acceleration environment
- Components
 - Miniature Electro-Static Accelerometer (MESA)
 - sensor is a flight spare from the OARE program
 - measure the quasi-steady acceleration environment
 - High-Resolution Accelerometer Package (HiRAP)
 - measure the vibratory environment at the MAMS location only
- Flight 6A configuration
 - MESA and HiRAP instruments active
 - Real-time data downlink from the ISS
- Additional features
 - Quasi-steady acceleration data can be mapped to various locations within the ISS using ISS body rates and body angles
 - Provides on orbit bias calibration capabilities

PIMS Operational Philosophy

- Operations are divided into three sections:
 - 1) Real-time operations
 - 2) Near real-time operations
 - 3) Offline operations
 - general characterization and specialized analyses
- Acceleration measurement using SAMS-II and MAMS planned for the duration of ISS operations beginning with Flight 6A operations (April 19, 2001)
- Potential for nearly continuous operations to characterize the environment
 - includes measurement of the environment, where possible, outside of "microgravity mode"
- AOS/LOS profiles call for 30 60 percent AOS coverage
 - requires the ability to deal with AOS and LOS data streams

Operational Philosophy

- Flight 6A operational configuration calls for 5 SAMS-II Sensor Enclosures (SE), MAMS MESA, and MAMS HiRAP
 - not all sensors will be active all the time resulting in a variety of acceleration measurement profiles
- PIMS has developed a core set of techniques for processing and displaying the acceleration data (see Section 8 for quasi-steady data and Section 9 for vibratory data)
 - Based on real-time and offline experience gained from SAMS and OARE data during Space Shuttle and Mir operations
 - Customized processing or displays as required by the microgravity user community
- Microgravity acceleration data will be available to Principal Investigators in near real time and offline through the WWW

Real-Time Operations

- Crux of real-time operations involves receiving, processing, and displaying microgravity acceleration data via the WWW
- Acceleration data displays via the WWW
 - PIMS displays are updated in real-time
 - Electronics snapshots are routed to the PIMS WWW page
 - Interested Principal Investigators can view the current environment by accessing the PIMS WWW page
 - ISS Microgravity Environment Monitoring System (MEMS) using Neural Networks (NN)
- Example real-time plots
 - Figure 15-1 USMP-4 (STS-87) IDGE Experiment Turn Off
 - Figure 15-2 USMP-4 (STS-87) Cabin De-Pressurization for EVA
 - Figure 15-3 LMS (STS-78) Nominal Microgravity Environment

PIMS ISS Acceleration Data Flow

Near Real-Time Operations

- Two primary functions performed
 - Merge AOS and LOS data streams
 - Generate processed (t,x,y,z) data files
 - store the data in a standard storage format
- Standard storage format details
 - Simplify access to acceleration data for Principal Investigators
 - Develop a standard file format for ISS acceleration data from any ISS acceleration measurement system and store ancillary data associated with each accelerometer
 - Ancillary data describes the conditions and circumstances under which the acceleration data were obtained
 - current ancillary data parameters include: t-zero, sampling rate, cutoff frequency, head ID, gain, station configuration, location, orientation, coordinate system, bias coefficients, scale factor, and Data Quality Measure (DQM)

Offline Operations

- Primary function is to allow access to acceleration data for non-time-critical processing
 - In general, allows a more detailed analysis of the measured microgravity environment
 - Capable of processing and analyzing a long period of data
 - Overall access to acceleration data greatly simplified by a universal storage format
- PIMS WWW page offline functions
 - Provide the capability to request plotted data or data files through an electronic request
 - Provide means for access to the processed acceleration data files
 - Provide access to PIMS disturbance database information

Offline Operations

- Example Near Real-time Plots
 - Figure 15-4 MSL-1 (STS-94) SOFBALL Radiometry Data
- Example Offline Plots
 - Figure 15-5 LMS (STS-78) Principal Component Spectral Analysis

Summary

- PIMS will receive, process, and store acceleration data for SAMS-II and MAMS data starting with flight 6A operations
- A universal storage format will be employed for data storage
 - simplify access to acceleration data
 - standardize formats for data storage to maximize access to all existing acceleration data by international partners
- Real-time data plots of the various available accelerometers will be available via the PIMS WWW page
- Offline access to plotted data and analysis capabilities available through PIMS and the PIMS WWW page
- General and specialized characterization of the ISS microgravity environment

MEIT 2001 Figure 15-1: IDGE Experiment Turn Off from STS-87 Mission (USMP-4)

MEIT 2001 Figure 15-2: Cabin De-pressurization Event From STS-87 (USMP-4)

MEIT 2001 Figure 15-3: Nominal Microgravity Environment from STS-78 (LMS)

OARE, Raw Data

CM-1 Experiment Location

MSL-1R

Raw OARE Data and SOFBALL Radiometry Data from STS-94

Body Coordinates

MEIT 2001 Figure 15-4: Raw OARE Data and SOFBALL Radiometry Data from STS-94 (MSL-1R)

MEIT 2001 Figure 15-5: Principal Component Spectral Analysis for the Entire STS-78 Mission (LMS)