

Section 16 Fundamentals of Microgravity Vibration Isolation

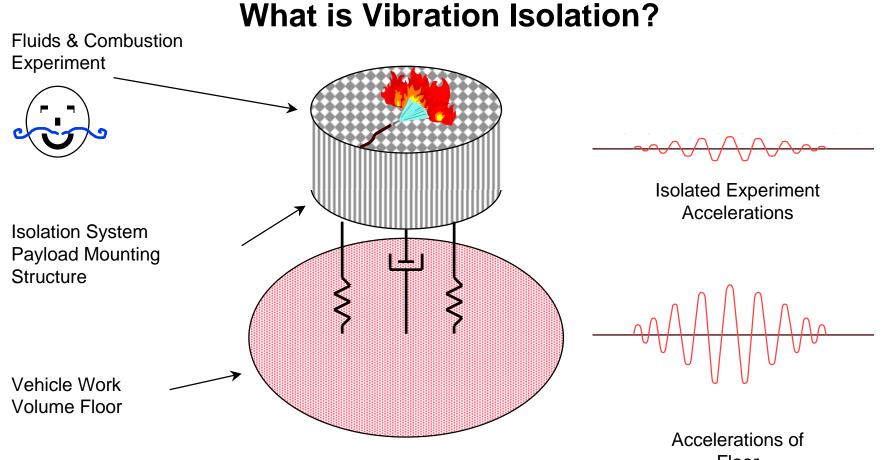
Dr. Mark Whorton Principal Investigator for g-LIMIT NASA Marshall Space Flight Center

Outline:

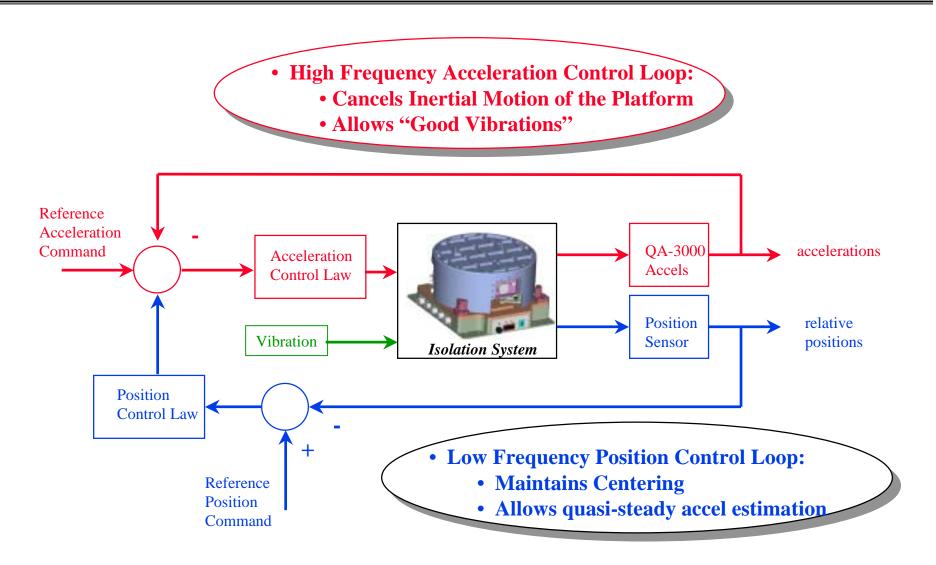
- Motivation
- Dynamics of Systems
- Active Control Concepts
- Active Control Examples
- Modern Control Approaches

Introduction

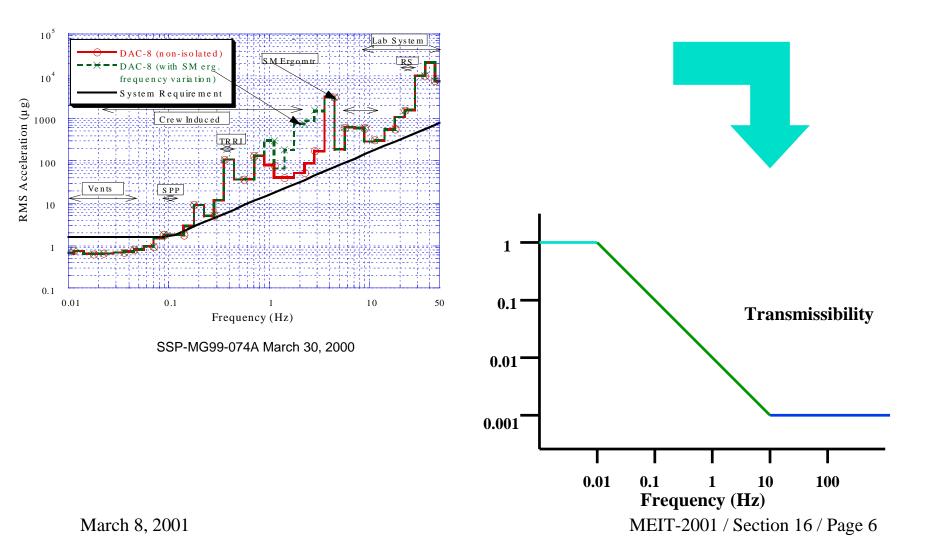
- The ambient spacecraft acceleration levels are often higher than allowable from a science perspective.
- To reduce the acceleration levels to an acceptably quiescent level requires vibration isolation.
- Either passive or active isolation can be used depending on the needs or requirements of a specific application.



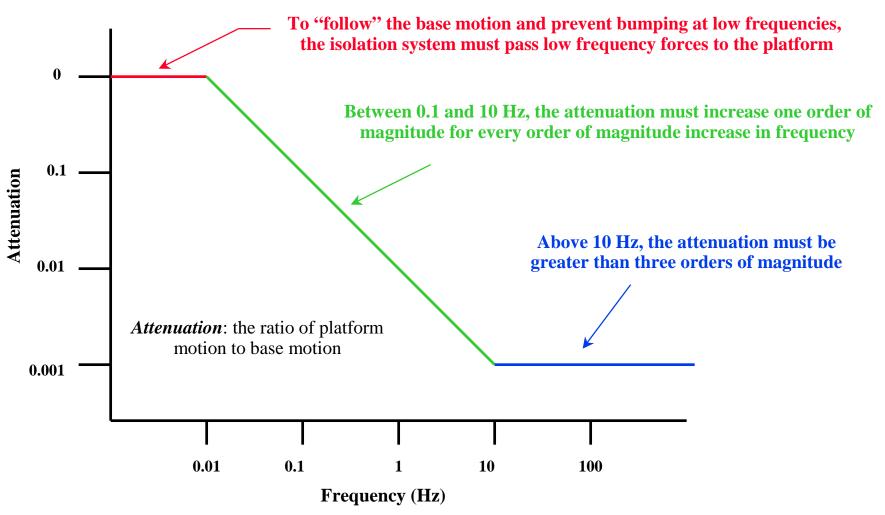
Floor



Why is Vibration Isolation Needed?

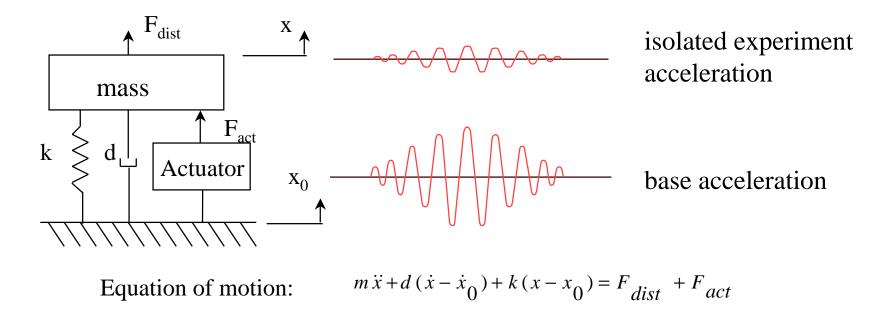


Attenuation Requirement



March 8, 2001

Single Degree Of Freedom (DOF) Example: Spring-Mass-Damper

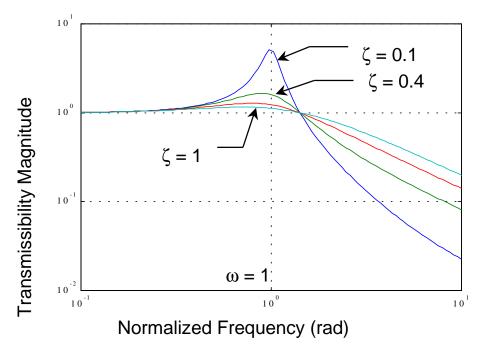


The dynamic response of the mass to a base acceleration is a function of the system mass, stiffness, and damping.

March 8, 2001

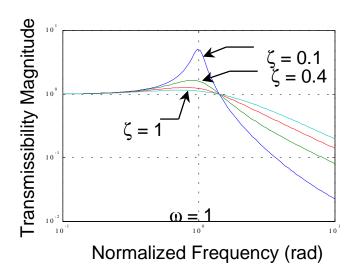
System Dynamics: Transmissibility

Transmissibility is the magnitude of the transfer function relating the acceleration (or position) of the mass to the base acceleration (or position). The transmissibility specifies the attenuation of base motion as a function of frequency.



Passive Vibration Isolation

- Select spring stiffness, mass, and damping for attenuation
- Reduce break frequency by minimizing spring stiffness *Typically not desirable to increase isolated mass*
- Select damping to trade between damped resonance and rate of attenuation



Transmissibility:

 $\frac{x}{x_0} = \frac{2\zeta\omega s + \omega^2}{s^2 + 2\zeta\omega s + \omega^2}$

Natural Frequency:

$$\omega = \sqrt{\frac{k}{m}}$$

Damping Ratio:

 $\zeta = \frac{d}{2\sqrt{km}}$

March 8, 2001

Active Vibration Isolation

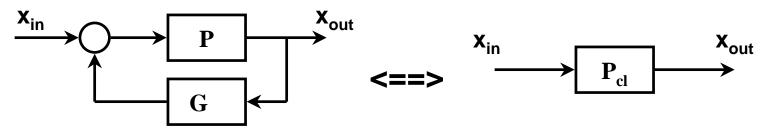
- Reduce the inertial motion of payload by sensing motion and applying forces to counter measured motion
- Active control can effectively change the system mass, stiffness, and damping *as a function of frequency*
- Whereas passive isolation only attenuates forces in passive elements, active control attenuates measured motion
 - Only active control can mitigate payload response to payload-induced vibrations
- Requires power, sensors, actuators, control electronics (analog and digital)

Active Control Illustration

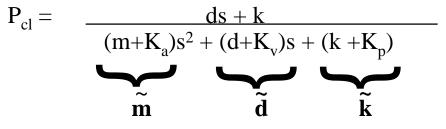
Consider the transfer function from base position to mass displacement:

$$P = \underbrace{ds + k}_{ms^2 + ds + k} \qquad \mathbf{x}_{in} \qquad \longrightarrow \mathbf{P} \qquad \longrightarrow \mathbf{x}_{out}$$

Now measure the displacement and "feed it back" with gains (K_a, K_v, K_p) and a control law given by $G = -K_as^2 - K_vs - K_p$

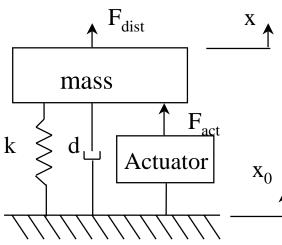


The closed loop transfer function becomes:



March 8, 2001

Active Isolation Example



Recall the Spring-Mass-Damper Example Equation of motion:

$$m\ddot{x} + d(\dot{x} - \dot{x}_{0}) + k(x - x_{0}) = F_{dist} + F_{act}$$

Consider the control law:

$$F_{act} = -K_a \ddot{x} - K_v (\dot{x} - \dot{x}_0) - K_p (x - x_0)$$

The resulting closed loop transmissibility is:

$$\frac{x}{x_0} = \frac{2\varsigma_{cl}\omega_{cl}s + \omega_{cl}^2}{s^2 + 2\varsigma_{cl}\omega_{cl}s + \omega_{cl}^2}$$

and the closed loop natural frequency and damping become:

$$\omega_{cl} = \sqrt{\frac{k+K_p}{m+K_a}} \qquad \qquad \varsigma_{cl} = \frac{(d+K_v)}{2\sqrt{(k+K_p)(m+K_a)}}$$

March 8, 2001

Passive Isolation

Transmissibility:

$$\frac{x}{x_0} = \frac{2\zeta\omega s + \omega^2}{s^2 + 2\zeta\omega s + \omega^2}$$

Active Isolation

$$\frac{x}{x_0} = \frac{2\varsigma_{cl}\omega_{cl}s + \omega_{cl}^2}{s^2 + 2\varsigma_{cl}\omega_{cl}s + \omega_{cl}^2}$$

Natural Frequency:

$$\omega = \sqrt{\frac{k}{m}}$$

$$\omega_{cl} = \sqrt{\frac{k + K_p}{m + K_a}}$$

Damping Ratio:

$$\varsigma = \frac{d}{2\sqrt{km}}$$

$$\varsigma_{cl} = \frac{(d + K_v)}{2\sqrt{(k + K_p)(m + K_a)}}$$

March 8, 2001

MEIT-2001 / Section 16 / Page 14

a

Active Control Concepts

However, it isn't as easy as it seems --

- Real systems aren't simple one degree of freedom lumped masses with discrete springs and dampers.
- Control system design is a function of system properties which typically aren't well known.

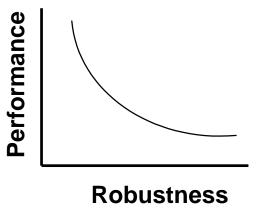
The two key control design issues are *performance* and *robustness*.

- *Performance*: how well is isolation achieved?
- *Robustness*: how well are uncertainties tolerated by the control system?

Key Control Issues

Robustness and **Performance**

of a closed loop system are *always* in opposition

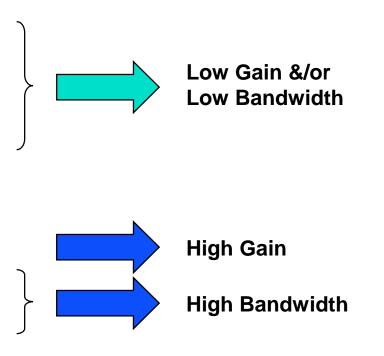


- » Robustness to uncertainties:
 - » umbilical properties
 - » structural flexibility
 - » mass and inertia variations
 - » sensor & actuator dynamics

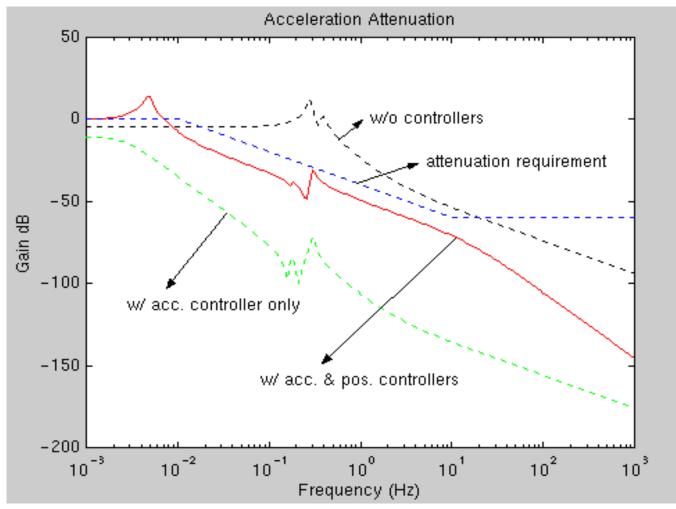
- » Performance:
 - » base motion attenuation
 - » payload disturbances
 - » forced excitation

Control Challenges

- » Robustness to uncertainties:
 - » umbilical properties
 - » structural flexibility
 - » mass and inertia variations
 - » sensor & actuator dynamics
- » Performance:
 - » base motion attenuation
 - » payload disturbances
 - » forced excitation

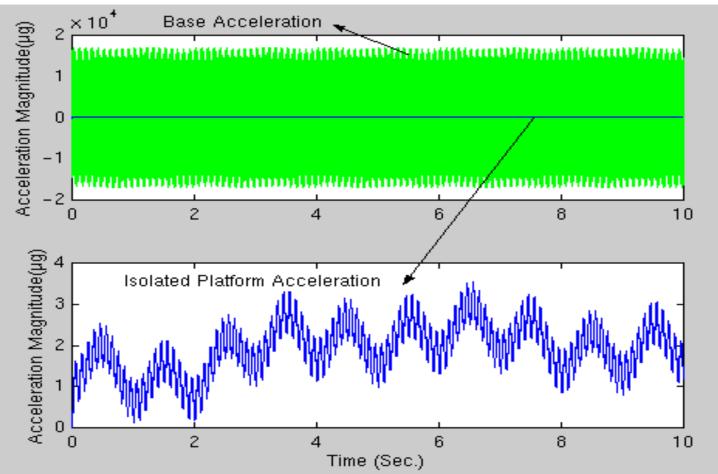


g-LIMIT 6DOF, Baseline PID Controllers (X-axis)



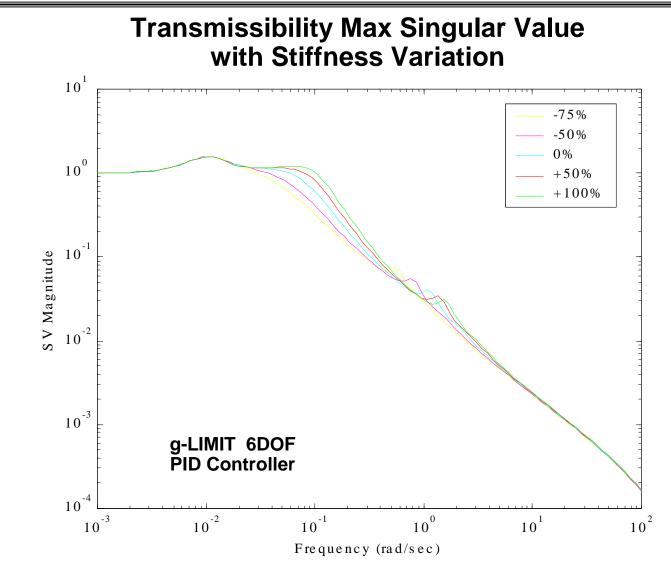
March 8, 2001

g-LIMIT 6DOF, Acceleration Time Response (X-axis)

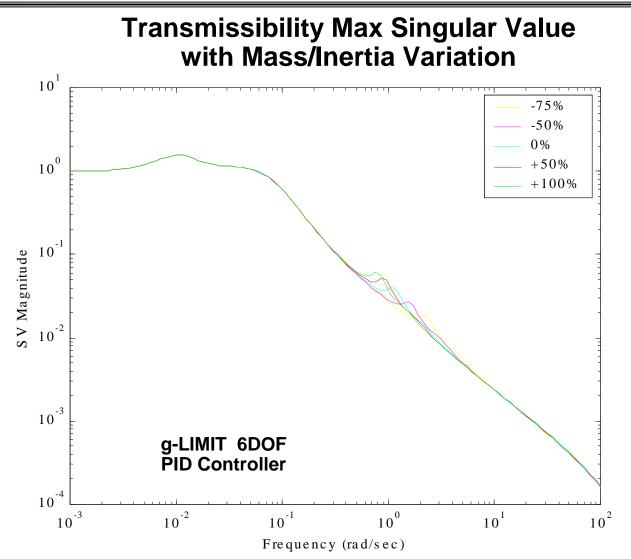


Base acceleration = $1.6 \sin(0.01 \text{ hz}^{*}t) + 16 \sin(0.1 \text{ hz}^{*}t) + 160 \sin(1 \text{ hz}^{*}t) + 1600 \sin(10 \text{ hz}^{*}t) + 16000 \sin(100 \text{ hz}^{*}t)$

MEIT-2001 / Section 16 / Page 19



March 8, 2001



March 8, 2001

Modern Control Approaches to Microgravity Vibration Isolation

Robust multivariable microgravity vibration control systems maximize performance for a specified bounded set uncertainties

March 8, 2001

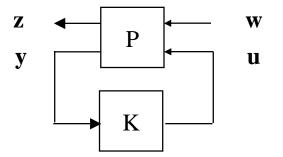
Design for Nominal Performance (NP): H₂ Methods

- Good nominal performance
- \bullet Performance metric well suited for μg vibration isolation
- Very poor robustness
- High order controllers

$$K_2 = \arg \left\{ \frac{\min}{K} \left\| T_{zw} \right\|_2 \right\}$$

where

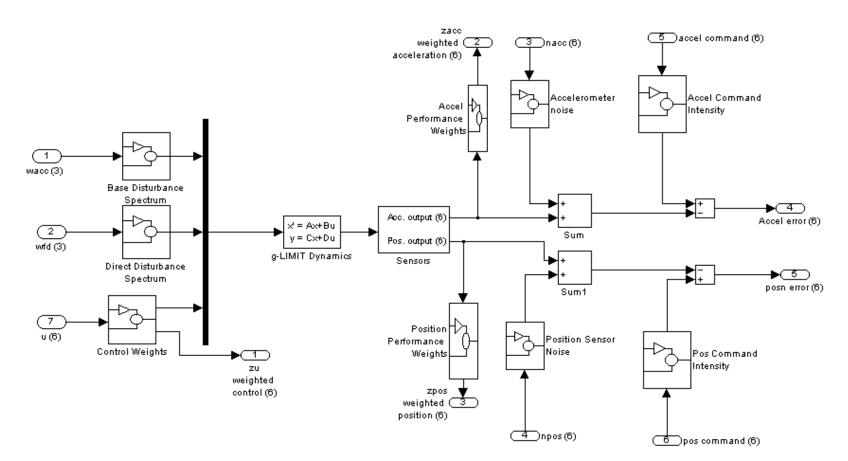
$$\left\|T_{zw}\right\|_{2} = \lim_{t \to \infty} E\{z(t)^{T} z(t)\}\}$$



$$K_2: \begin{cases} \dot{x}_c = A_c x_c + B_c y\\ u = C_c x_c \end{cases} \qquad x_c \in \Re^{nc}$$

March 8, 2001

Generalized Plant for H2 Design



g-LIMIT H₂ Control Design

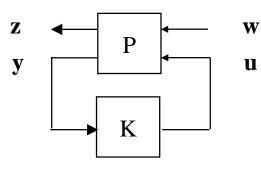
• Objective: minimize H₂ norm of closed loop from disturbances, w, to performance variables, z

w =

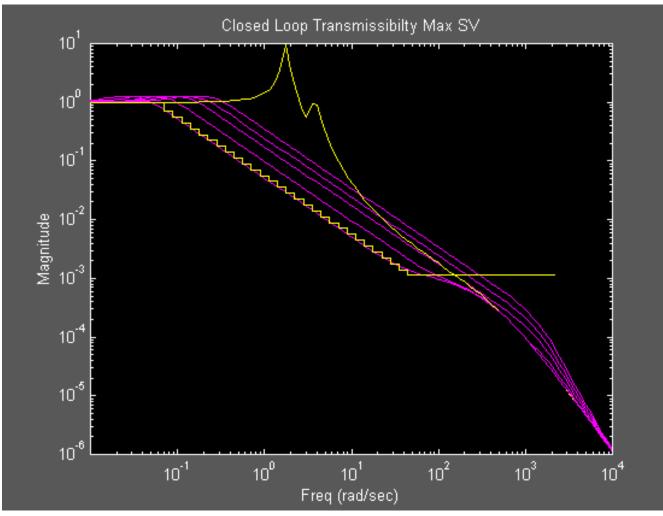
base acceleration payload induced force accelerometer noise position sensor noise

weighted control weighted acceleration weighted relative position y = platform acceleration relative position

u = control actuators



g-LIMIT 6 DOF H2 Design Performance



MEIT-2001 / Section 16 / Page 26

Design for Robust Stability (RS): H_∞ Methods:

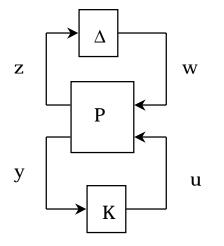
- Sufficient condition for RS of all plants in the set parameterized by the bounded model errors $\Delta \in \Delta_{\delta}, \Delta_{\delta} = \{\Delta : \|\Delta\|_{\infty} < \delta\}$ is $\|T_{ZW}\|_{\infty} < \frac{1}{\delta}$
- Performance metric is the peak magnitude of transfer function – not well suited for µg vibration isolation
- High order controllers

$$K_{\infty} = \arg \begin{bmatrix} \min_{K} \| T_{ZW} \|_{\infty} \end{bmatrix}$$

where

$$\left\|T_{zw}\right\|_{\infty} = \sup_{\omega} \left\{\overline{\sigma}(T_{zw}(j\omega))\right\}$$

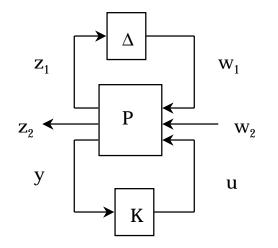
March 8, 2001



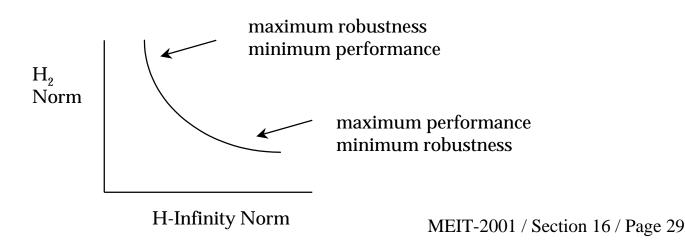
Design for Nominal Performance and Robust Stability Mixed H_2/H_{∞} Methods:

- Optimizes H₂ nominal performance
- Guarantees H_{∞} robust stability
- Optimized controller of FIXED DIMENSION
- Extremely computationally intensive
- Objective:
 - NP $\min \|T_{z^2w^2}\|_2$ Subject to

• **RS** -
$$||T_{z1w1}||_{\infty} < \delta$$



- The utility of mixed norm design is exploited by separating performance and robustness using the most appropriate norms
- A set of controllers is designed that explicitly trades
 between RS and NP
- Determine maximum achievable performance subject to robust stability constraints



Where Do We Go From Here?

First generation isolation systems are currently in flight demonstration phase

Once operational, will require significant sustaining engineering

- payload scheduled control design
- routine ongoing performance/stability analysis
- loss of science time

Second generation systems should provide better isolation performance in a more cost effective manner

- maximize isolation performance
- minimize payload impacts
- autonomous operation & optimization

Neural Network Based Adaptive Control Systems

Accommodate payload uncertainties/variations

- mass/inertia
- structural modes
- center of gravity

Biologically inspired technology

- autonomous adaptation
- reduces sustaining engineering
- maximize isolation performance

Significant technology transfer potential

Demonstrated in various aerospace vehicle applications

Further Reading:

- Grodsinsky C. and Whorton, M., "Survey of Active Vibration Isolation Systems for Microgravity Applications," *Journal of Spacecraft and Rockets*, Vol. 37, No. 5, Sept. – Oct. 2000.
- 2. Knospe, C. R., Hampton, R. D., and Allaire, P. E., "Control Issues of Microgravity Vibration Isolation," *Acta Astronautica*, Vol. 25, No. 11, 1991, pp. 687-697.
- 3. Kuo, Benjamin C., <u>Automatic Control Systems</u>, Prentice-Hall, 1987
- 4. Thomson, William T., <u>Theory of Vibration With Applications</u>, Prentice-Hall, 1988.