

ISS Design Analysis Cycle 8 Environment Predictions

Microgravity Environment Interpretation Tutorial NASA Glenn Research Center March 6-8, 2001

Steve Del Basso

Structural Analysis Microgravity Team

Boeing 502 Gemini Avenue Houston, Texas 281-853-1603

- Design Analysis Cycle
- Analysis Methods
- Active Rack Isolation System
- Disturbance Forcing Functions
- Quasi-steady Accelerations
- Vibratory Accelerations

DACs may be viewed as PDR/CDR level analyses or "special" case studies.

- DAC8 was completed in winter 1999.
- DAC9 is in process with results expected summer of 2001.
- DACs capture updated models & disturbance forcing functions.

Verification Analysis Cycles (VACs) are in process and are conducted on a flight by flight basis.

- Verify that the hardware launched complies with Assembly Complete microgravity requirements.
- Priority tasks necessary for Certification of Flight Readiness.

Microgravity sustaining engineering efforts underway.

- Use of on-orbit measurements for issue resolution, uncertainty reduction, analytical model correlation.
- Support anomaly resolution and operations.

Methods & Tools Quasi-Steady Analysis

Methods & Tools Structural Dynamic Analysis

Methods & Tools VibroAcoustic Analysis

March 8, 2001

Methods & Tools Controls Analysis

Methods & Tools Disturbance Analysis & Testing

March 8, 2001

ARIS

March 8, 2001

Forcing Functions Articulate Joints For PV Array Solar Incidence

<u>Solar and Radiator Rotary Joints:</u> Torque Ripple, Bearing Friction, Gear Train Meshing Friction, Position/Resolver Error

March 8, 2001

Forcing Functions Control Moment Gyros For Torque Equilibrium Attitude

March 8, 2001

Forcing Functions

Co. / Agency	BHV			
Item	Fan, AAA (17	5 W. nominal)		
Location (Number)	LCT (1), LCZ	,, noninal)		
Location (Number)	(1) (1); (1)			
	(1) (n? (1)			
	(1) (19.(1)2			
-	(1) 04 (1)			
Duty	0.2 for each fa	an		
References	144			
Bibliography	1,2,11,17,26,3	8,50,52,55,56,75		
	force is			
Comments	assumed to			
	be 0.115			
1/3-OB Ctr Freq, Hz	Time, s	Force, lb(rms)	Moment, in-lb(rms)	Sound Power, dB re 1pW(rms)
0.01		5.520E-04		
0.0125		6.175E-04		
0.016		6.960E-04		
0.02		7.810E-04		
0.025		8.730E-04		
0.0315		9.820E-04		
0.04		1.100E-03		
0.05		1.235E-03		
0.063		1.200E-03		
0.003		1.550E-03		
0.08		1.560E-03		
0.1		1.750E-03		
0.125		1.950E-03		
0.16		2.200E-03		
0.2		2.470E-03		
0.25		2.760E-03		
0.315		3.100E-03		
0.4		3.490E-03		
0.5		3.910E-03		
0.63		4.380E-03		
0.8		4.940E-03		
1		6.995E-04		
1.25		1.033E-03		
1.6		1.033E-03		
2		1.113E-03		
2.5		1.212E-03		
3.15		3 497E-03		
4		1 10/E-03		
-		2.034E-03		
63		2.373E-03		
0.3		1 200 - 02		
0		1.200E-03		
10		1.525E-03		
12.5		2.159E-03		
16		2.498E-03		
20		3.200E-03		
25		3.321E-03		
31.5		8.471E-03		
40		6.464E-03		
50		1.197E-02		4.450E+01
63		2.921E-02		4.450E+01
80		3.200E-02		4.450E+01
100		8.052E-02	İ	4.120E+01
125		1.643E-01		4.120E+01
160		2.564E-01		4.120F+01
200		1 155E-01		5 200E+01
250		1.633E-01		5.200E+01
315		9.077E-02		5 2005+01
315		3.01/E-02		5.200E+01

March 8, 2001

DISTURBANCE DATABASE

<u>Pressurized Module Disturbances:</u> Fans, Pumps, Valves, Coldplates, Ducts (Mechanical and Acoustic)

Forcing Functions

Fx (lbf)

My (in-lbf)

TVIS Certification Test

<u>Crew Exercise Equipment:</u> Treadmill, Ergometer, Resistive Exercise Device (Isolated/Non-isolated)

InterVehicular Activity: Translation, Station Keeping, Console Operations, ... Scheduled Maintenance.

March 8, 2001

Thermal Induced Vibration

	HARDWARE ITEM	STATIC FRICTION RELEASE (STICK-SLIP)	THERMAL STEP & MODAL DEFLECTION	SLOWLY VARYING DEFORMATION (~ORBITAL RATE)	THERMAL BUCKLING (OIL CANNING)	
	SHORT SPACER/ LONG SPACER INTERFACE	SIGNIFICANT • Rocketdyne Truss Attachment System (RTAS) forcing function developed by BHB (Refs. 10, 11, & 12). • BHOU assessment indicates that RTAS stick/silp is a Microgravity Critical Item (MGCL) (Refs. 4). • Disturbance adequacy rating of 7 meets verification criteria.	NOT APPLICABLE TO INTERFACE	NOT APPLICABLE TO INTERFACE	NOT APPLICABLE TO INTERFACE	
	LONG SPACERS	NONE • No sliding joints other than at interface with short spacer – see short spacer/long spacer interface (Ref. 6).	NONE • No vibration modes below 30 Hz (Ref. 6).	NOT APPLICABLE • Item by itself is very stiff. Only when integrated with other elements (including non-PG2) will item experience low frequency motion (Ref. 17).	NONE • Constructed of hollow, extruded aluminum tubes with 3/16 inch minimum thickness. There are no thin plates or long slender members(Ref. 6).	
	IEAs	NONE • No sliding joints other than at interface with EPS radiator (Ref. 6) – see IEA/EPS radiator interface.	NONE No vibration modes below 30 Hz (Ref. 6). An IEA with full sun exposure could see a heat-up rate of 4 degrees F per hour. The rate is slow due to the mass of the structure (Ref. 20).	NOT APPLICABLE • Item by itself is very stiff. Only when integrated with other elements (including non-PG2) will item experience low frequency motion (Ref. 17).	NONE • Free thermal expansion with no thin plates or long slender members (Ref. 6)	
EPS RADIATORS NoNE • No sliding joints other than at interface with EPS radiator (Ref. 6) – see IEA/EPS radiator interface.		NONE • No sliding joints other than at interface with EPS radiator (Ref. 6) – see IEA/EPS radiator interface.	NEGLIGIBLE • Fundamental vibration mode at 0.23 Hz is too high to be affected by slow temperature variations (Ref. 6). • Other than the PV Arrays, most items have a long thermal time constant, e.g. 15 minutes for the radiators (Ref. 15). • Each radiator weighs about 1600 lbs, compared to 2400 lbs for the PV Array, and about half of it is a concentrated load at the base. The radiator is about a quarter of the size of the PV Array. The forces and moments generated at the base of the radiator will be much smaller than that generated at the base of the PV Array which are negligible (Ref. 17).	NEGLIGIBLE • Each radiator weighs about 1600 lbs, compared to 2400 lbs for the PV Array, and about half of it is a concentrated load at the base. The radiator is about a quarter of the size of the PV Array. The forces and moments generated at the base of the radiator will be much smaller than that generated at the base of the PV Array which are negligible (Ref. 17).	NONE • The radiators are freely expanding structures (Refs. 6 & 17).	

Forcing Functions

Forcing Functions

March 8, 2001

ISS Traffic Model

- The traffic plan includes a complete traffic event schedule and a projected resupply/return loading by cargo category starting with first element launch through end of life.
- The integrated traffic plan is also used to support design analysis, unique transportation system studies, off-nominal operations planning, and to assess the viability of long-term planning inputs from International Partners.

What are the major disturbers to ISS micro-g

- Docking events
- Undocking events
- Reboosts
- EVAs

Threats to micro-gravity periods

- Debris Avoidance Maneuvers
- Deferred or contingency EVAs
- Launch schedule changes

International Space Station Traffic Model

March 8, 2001

International Space Station Traffic Model Quiet Periods of 15 days or more 2001 - 2008 FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN 2001 2001 £ o ^ ` ` ₽⊡°**⊡†** n ≎ ∿⊓ ାରଙ ŤĤ 236 Days 27 Days 23 Days 23 Days 21 Days 15 Days 19 Days 28 Days 16 Days 17 Days 23 Days 21 Days 35 Days 2002 2002 ♦०¦f*@= ቀኅ∿ኅቀ ቀቆ ¥∘a≁ Ŷ 220 Days 35 Davs 47 Davs 26 Day 24 Davs 18 Davs 20 Day 20 Days 20 Days 45 Days 2003 2003 ৵៰৻৵ <u>æ</u>≎ ⊅සං උංදා¢ °⊏ -የቆ Ŷ Ŷ 180 lôŵ đ 214 Davs 17 Days 19 Days 48 Days 19 Days 28 Days 17 Days 41 Day 45 Days 25 Days 2004 2004 ∿ා⊲⊲ත්ෙපෙසිඉ⊳්ටඉස් የቆ l& ക⇔ക \$0 æ. ю °œ Hi fi Ф 140 Davs Ф I Days 21 Days 17 Days 21 Days 17 Days 25 Days 18 Days 25 Days 2005 2005 ° o ° 🐨 ᡰᡇ᠐ᡐ<u>ᠳ</u> ዮ 🖬 Ê Û TĤ የመ Û Ш 327 Davs 47 Days 32 Days 40 Days 8 Days 28 Days 32 Days 2 Days 25 Days Days 2006 2006 ቀራ ┝╸┉┏┥ ዋ□◊ወ രവംഭരഷ് Ŷ 🗆 đ Ŷ⊡d°∣ ď 236 Davs 30 Days 9 Days 35 Days 42 Days 40 Days 22 Days 23 Days 47 Days 2007 2007 ቅራቄ∿ቀ ০ একা የቆ വദ∿ഥ് 0006 የሮ 224 Days 47 Davs 30 Davs 17 Days 84 Days 57 Davs 36 Days 2008 2008 ഫംഗൈഹംഗംഹം የሰብ ०००िस ra∘dr∣ የወ[_ ŵ -የሮ Ψ 243 Davs 57 Days 30 Days 24 Days 35 Days 33 Days 55 Days 18 Days 48 Days O Dock X Other Disturbing Events: Quiet Period Undock △ Reboost

Date: 9/6/00 4:59:51 PM

Imported 04/09/2000 Imported 05/13/2000

Version 16 DAC8 (ATV & more HTVs)

ISS Traffic Model Version 6.2 Page 1 of 2

March 8, 2001

Imported 04/09/2000 Imported 05/13/2000

March 8, 2001

Page 2 of 2 MEIT-2001 / Section 19 / Page 25

Conclusion

- Currently there is no requirement to meet the micro-gravity period requirement during assembly
- Based on analysis the micro-gravity requirement can be satisfied during the assembly complete period

15 of 32 racks less than 1 μ g magnitude & 0.2 μ g perpendicular component.

Location	Rack P	osition in ISS	Frame	μG V	'ector	Unit Vector			Cone Angle		
									Max angle	⊥ Component	Magnitude at
				Magnitude	⊥ Component				from unit	@ max angle	max angle
	X (ft)	Y (ft)	Z (ft)	(μG)	(μG)	Х	Y	Z	vector (deg)	(μG)	(μG)
CG	-15.34	-1.28	14.87	0.210	0.038	-0.994	-0.107	0.013	20.660	0.025	0.065
USL-C1	15.55	0.00	11.26	0.245	0.064	-0.624	-0.773	-0.119	24.100	0.054	0.122
USL-C2	12.05	0.00	11.26	0.232	0.063	-0.665	-0.722	0.191	26.258	0.050	0.101
USL-C3	8.55	0.00	11.26	0.230	0.070	-0.635	-0.584	0.506	26.070	0.051	0.104
USL-C4	5.05	0.00	11.26	0.243	0.078	-0.546	-0.406	0.733	23.624	0.056	0.129
USL-C5	1.55	0.00	11.26	0.266	0.084	-0.446	-0.247	0.860	20.229	0.062	0.168
USL-S1	15.55	4.84	16.11	0.689	0.087	-0.321	0.068	-0.945	7.346	0.087	0.672
USL-S2	12.05	4.84	16.11	0.645	0.086	-0.340	0.108	-0.934	7.765	0.086	0.628
USL-S3	8.55	4.84	16.11	0.602	0.084	-0.362	0.154	-0.919	8.219	0.084	0.584
USL-S4	5.05	4.84	16.11	0.560	0.083	-0.386	0.207	-0.899	8.793	0.076	0.488
USL-P1	15.55	-4.84	16.11	0.722	0.088	-0.217	-0.488	-0.845	7.082	0.088	0.707
USL-P2	12.05	-4.84	16.11	0.671	0.087	-0.230	-0.497	-0.837	7.551	0.087	0.656
USL-P4	5.00	-4.84	16.11	0.570	0.085	-0.264	-0.519	-0.813	8.725	0.084	0.546
JPM1-A1	29.66	-10.82	15.92	1.035	0.091	-0.126	-0.652	-0.748	5.190	0.091	1.006
JPM2-F1	40.00	-10.82	15.92	1.193	0.093	-0.118	-0.617	-0.778	4.618	0.093	1.156
JPM3-A2	29.66	-14.32	15.92	1.121	0.092	-0.097	-0.726	-0.680	4.810	0.092	1.089
JPM4-F2	40.00	-14.32	15.92	1.274	0.094	-0.094	-0.688	-0.720	4.339	0.094	1.234
JPM5-A3	29.66	-17.82	15.92	1.217	0.092	-0.072	-0.783	-0.617	4.450	0.092	1.182
JPM6-F3	40.00	-17.82	15.92	1.364	0.094	-0.072	-0.744	-0.664	4.068	0.094	1.321
JPM7-A4	29.66	-21.32	15.92	1.320	0.093	-0.050	-0.827	-0.561	4.122	0.093	1.283
JPM8-A5	29.66	-24.82	15.92	1.429	0.093	-0.032	-0.860	-0.510	3.831	0.093	1.392
JPM9-F5	40.00	-24.82	15.92	1.566	0.095	-0.036	-0.825	-0.564	3.585	0.095	1.520
JPM10-F6	40.00	-28.32	15.92	1.675	0.096	-0.021	-0.854	-0.521	3.384	0.096	1.627
APM-CLG1	34.84	14.39	10.74	0.517	0.089	-0.435	0.684	-0.586	9.998	0.089	0.505
APM-CLG2	34.84	18.33	10.74	0.640	0.093	-0.379	0.794	-0.475	8.422	0.093	0.629
APM-FWD1	40.00	14.39	15.91	1.078	0.094	-0.272	0.266	-0.925	5.027	0.094	1.067
APM-FWD2	40.00	18.33	15.91	1.146	0.095	-0.277	0.390	-0.878	4.781	0.095	1.135
APM-FWD3	40.00	22.26	15.91	1.229	0.096	-0.277	0.493	-0.825	4.521	0.096	1.219
APM-FWD4	40.00	26.19	15.91	1.326	0.098	-0.274	0.576	-0.771	4.267	0.098	1.316
APM-AFT1	29.67	14.39	15.91	0.963	0.092	-0.297	0.366	-0.882	5.528	0.092	0.951
APM-AFT2	29.67	18.33	15.91	1.045	0.094	-0.295	0.491	-0.820	5.173	0.094	1.033
APM-AFT3	29.67	22.26	15.91	1.142	0.095	-0.290	0.587	-0.756	4.824	0.095	1.131
APM-AFT4	29.67	26.19	15.91	1.251	0.098	-0.282	0.661	-0.695	4.504	0.098	1.242
CAM-MID	36.08	0.00	4.17	0.608	0.091	-0.045	-0.410	0.911	8.877	0.091	0.581
CAM-TOP	36.08	0.00	0.00	1.077	0.092	0.033	-0.216	0.976	5.019	0.092	1.042

March 8, 2001

- Centrifuge startup and shut down
 - Spin-up for 120 sec to 236 deg/s, spin for 6.4 hours, spin-down for 120 sec.
 - Starts at 17000 sec
- TRRJ slew at low betas
 - TRRJ 0 beta slew rates TRRJ Torque Power Spectral Density has 87.7% of its power below .01 Hz.
 - Not Applicable
- Solar Thermal base loads
 - Exponential decay for 210 seconds every 2160 seconds (night), 3360 (day), forces combined for eight arrays
 - Lighting dependent , continuous
- LAB4 Vent
 - Force profile, duration of 8700 seconds
 - Starts at 6000 seconds
- RSA6 Vent
 - Exponential decay of 600 seconds every 9000 seconds
 - Starts at 10000 seconds
- Treadmill Gyro Start-up
 - +.23 ft-lbs. for 10minutes, 0 ft-lbs. for 60 minutes, -.23 ft-lbs. for 10 minutes, repeated every 30 minutes.
 - Starts at 6000 seconds

DAC8 Quasi-steady Individual Disturbance Inputs

DAC8 Quasi-steady Individual Disturbance Inputs

14 versus 15 of 32 racks under 1 μ g magnitude and .2 μ g perpendicular component (APM AFT1 to 1.068 & 0.22)

		•	Magnitude				⊥ Component	
	Magnitude	Magnitude	Delta		⊥ Component	⊥ Component	Delta	
	Disturbance	Nominal	Dist-Nom	Mag %	Disturbance	Nominal	Dist-Nom	⊥ Component
Location	(μG)	(μG)	(μG)	Difference	(μG)	(μG)	(μG)	% Difference
CG	0.211	0.210	0.001	0%	0.080	0.046	0.203	74%
USL-C1	0.293	0.245	0.048	20%	0.158	0.064	0.094	147%
USL-C2	0.269	0.232	0.037	16%	0.150	0.063	0.087	138%
USL-C3	0.258	0.230	0.028	12%	0.140	0.070	0.070	100%
USL-C4	0.259	0.243	0.016	7%	0.128	0.078	0.050	64%
USL-C5	0.293	0.266	0.027	10%	0.116	0.084	0.032	38%
USL-S1	0.711	0.689	0.022	3%	0.170	0.087	0.083	95%
USL-S2	0.668	0.645	0.023	4%	0.156	0.086	0.070	81%
USL-S3	0.625	0.602	0.023	4%	0.142	0.084	0.058	69%
USL-S4	0.584	0.560	0.024	4%	0.128	0.083	0.045	54%
USL-P1	0.791	0.722	0.069	10%	0.139	0.088	0.051	58%
USL-P2	0.735	0.671	0.064	10%	0.127	0.087	0.040	46%
USL-P4	0.623	0.570	0.053	9%	0.105	0.085	0.020	24%
JPM1-A1	1.132	1.035	0.097	9%	0.150	0.091	0.059	65%
JPM2-F1	1.293	1.193	0.100	8%	0.188	0.093	0.095	102%
JPM3-A2	1.225	1.121	0.104	9%	0.153	0.092	0.061	66%
JPM4-F2	1.383	1.274	0.109	9%	0.172	0.094	0.078	83%
JPM5-A3	1.327	1.217	0.110	9%	0.157	0.092	0.065	71%
JPM6-F3	1.480	1.364	0.116	9%	0.174	0.094	0.080	85%
JPM7-A4	1.435	1.320	0.115	9%	0.162	0.093	0.069	74%
JPM8-A5	1.547	1.429	0.118	8%	0.168	0.093	0.075	81%
JPM9-F5	1.691	1.566	0.125	8%	0.183	0.095	0.088	93%
JPM10-F6	1.804	1.675	0.129	8%	0.189	0.096	0.093	97%
APM-CLG1	0.710	0.517	0.193	37%	0.151	0.089	0.062	70%
APM-CLG2	0.856	0.640	0.216	34%	0.133	0.093	0.040	43%
APM-FWD1	1.184	1.078	0.106	10%	0.268	0.094	0.174	185%
APM-FWD2	1.283	1.146	0.137	12%	0.259	0.095	0.164	173%
APM-FWD3	1.393	1.229	0.164	13%	0.249	0.096	0.153	159%
APM-FWD4	1.513	1.326	0.187	14%	0.242	0.098	0.144	147%
APM-AFT1	1.068	0.963	0.105	11%	0.219	0.092	0.127	138%
APM-AFT2	1.176	1.045	0.131	13%	0.211	0.094	0.117	124%
APM-AFT3	1.296	1.142	0.154	13%	0.206	0.095	0.111	117%
APM-AFT4	1.423	1.251	0.172	14%	0.206	0.098	0.108	110%
CAM-MID	0.650	0.608	0.042	7%	0.238	0.091	0.147	162%
CAM-TOP	1.100	1.077	0.023	2%	0.252	0.092	0.160	174%

March 8, 2001

US Lab Model Frequencies

Integrated US Lab Model

9.29E-04	Rigid Body Mode
1.60E-03	Rigid Body Mode
2.06E-03	Rigid Body Mode
2.33E-03	Rigid Body Mode
2.69E-03	Rigid Body Mode
3.93E-03	Rigid Body Mode
2.39E+00	
2.83E+00	
2.89E+00	
2.99E+00	
3.04E+00	
3.08E+00	
3.12E+00	
3.29E+00	
3.39E+00	
3.62E+00	
3.75E+00	
4.04E+00	

DAC8 Finite Element Model

MEIT-2001 / Section 19 / Page 35

March 8, 2001

DAC8 Finite Element Model

DAC8 Finite Element Model

Isolation Plate

March 8, 2001

Requirement Applicability

DOATOR

DAC8 Performance Structural Dynamic Frequency Range

March 8, 2001

NIRA 99 - US Lab Structural Dynamic Frequency Range

Non-Isolated Rack Assessment Differences From DAC8 Requirement Compliance Results

- 1% Damping
- + 2Crew translations & 2console ops
- + Payload disturbances (8 racks in Lab, 3 in COF and 2 in JEM)(21 sources per rack includes AAA fan.)
- @ Non-isolated rack interfaces
- Non-isolated Lab ergometer subsequently isolated (see DAC8)

March 8, 2001

NIRA 99 - JEM-PM Structural Dynamic Frequency Range

Non-Isolated Rack Assessment Differences From DAC8 Requirement Compliance Results

- 1% Damping
- + 2Crew translations & 2console ops
- + Payload disturbances (8 racks in Lab, 3 in COF and 2 in JEM)(21 sources per rack includes AAA fan.)
- @ Non-isolated rack interfaces
- Non-isolated Lab ergometer subsequently isolated (see DAC8)

March 8, 2001

NIRA 99 - JEM-EF Structural Dynamic Frequency Range

Non-Isolated Rack Assessment Differences From DAC8 Requirement Compliance Results

- 1% Damping
- + 2Crew translations & 2console ops
- + Payload disturbances (8 racks in Lab, 3 in COF and 2 in JEM)(21 sources per rack includes AAA fan.)
- @ Non-isolated rack interfaces
- Non-isolated Lab ergometer subsequently isolated (see DAC8)

March 8, 2001

Non-Microgravity Mode (External Ops Case) - U.S. Lab Structural Dynamic Frequency Range

Non-Microgravity Mode Differences From NIRA-99

- Add non-microgravity mode disturbances to NIRA-99
- External Operations Case presented includes 2 EVA's, JEM Airlock and Mobile Transporter ops
- Other cases examined focused on thruster activity reboost, CMG de-saturation, attitude hold
- Cases still to be examined: docking, berthing, rack rotation, et cetera

March 8, 2001

Frequency (Hz.)

U.S. Lab Ground Test To Analysis Comparison With Ground Test Finite Element Model

U.S. Lab Ground Test To Analysis Comparison Rack F6 Response

Run 65 - Test Vs. Analysis Disturbers - LAP6 PPA, LAP6 Thc Fan, LAS6 PPA, LAF6 AAA Fan

March 8, 2001

U.S. Lab Ground Test To Analysis Comparison Standoff S6/S5 Response

March 8, 2001

DAC8 Statistical Energy Analysis Model

March 8, 2001

DAC8 Statistical Energy Analysis Model

March 8, 2001

DAC8 Performance **Vibroacoustic Frequency Range**

Frequency

SEA/TEST Response Ratio to DAC8 USL Equipment Operating (No CDRA)

SEA/TEST Response Ratio to DAC8 USL Equipment Operating

U.S. Lab Ground Test To Analysis Comparison Rack and Standoff Response

DOATOR.

U.S. Lab Ground Test To Analysis Comparison Transfer Functions

LAB Test Correlation with SEA Ground Test Model Input @ Las6 Left Post (Ch 5) Output @ Las5 Left Post (Rss Ch's 10,11,12)

Worst case & Nominal isolation, CG Variations, Worst VP, Worst Input Direction, Worst Ks mall corner 3 or 5, Rigid Rack

March 8, 2001

Total Isolated Rack Acceleration Levels (ARIS Verification Conditions)

March 8, 2001

The ISS vehicle has been designed to provide researchers a viable microgravity environment established jointly with the science community.

• Features:

- Laboratories located near the vehicle center of mass
- Articulating photovoltaic and radiator appendages to enable once per orbit vehicle rotation
- Non-propulsive attitude control
- Source isolated exercise equipment
- Receiver isolation systems
- Microgravity Mode operations

Design Convergence:

- Requirements
- Control Plan
- Key Ground Tests
 - Control Moment Gyros
 - Rotating Joints
 - Node1
 - Service Module
 - Lab
 - COF sub-systems
- Verification

Initial payload microgravity requirements have been approved for the non-isolated, pressurized payloads.

Key threats & planned/recommended countermeasures:

- ARIS isolation performance "Shake down" experiment on flight 6A "ARIS ICE".
- Service Module air conditioner compressor non-compliance Approved ground test and on-orbit installation of vibration mounts and extended fluid flex lines.
- Service Module ergometer non-compliance with verified ARIS performance. Pursue early
 measurements to confirm predictions and resolve if necessary.
- U.S. Lab ergometer non-compliance due to rack to pivot pin impact. - Pursue early measurements to confirm predictions and resolve if necessary.
- Payload disturbances, payload rack structural dynamics. Work requirement definition and verification process.

Sustaining Engineering Underway:

- Use early on-orbit measurement data to establish confidence in analytical models
- Support operations
- Perform anomaly resolution
- Insure Assembly Complete compliance

March 8, 2001

- **CoFR : Certification of Flight Readiness**
- **COF** : Columbus Orbital Facility
- **GN&C: Guidance, Navigation, and Control**
- IRD : Interface Requirements Document
- **JEM : Japanese Experiment Module**
- PD : Payload Developer
- **PIA** : Payload Integration Agreement
- **PEI** : Payload Engineering Integration
- **POIC : Payload Operations Integration Center**
- **RS** : Russian Segment
- **SSP** : Space Station Program
- **USOS: United States On-orbit Segment**