

Section 14: Fundamentals of Microgravity Vibration Isolation

Dr. Mark Whorton Principal Investigator for g-LIMIT NASA Marshall Space Flight Center

March 6, 2003

Outline:

- Motivation
- Dynamics of Systems
- Active Control Concepts
- Active Control Examples
- Modern Control Approaches

Introduction

- The ambient spacecraft acceleration levels are often higher than allowable from a science perspective.
- To reduce the acceleration levels to an acceptably quiescent level requires vibration isolation.
- Either passive or active isolation can be used depending on the needs or requirements of a specific application.

Attenuation Requirement

Single Degree Of Freedom (DOF) Example: Spring-Mass-Damper

The dynamic response of the mass to a base acceleration is a function of the system mass, stiffness, and damping.

System Dynamics: Transmissibility

Transmissibility is the magnitude of the transfer function relating the acceleration (or position) of the mass to the base acceleration (or position). The transmissibility specifies the attenuation of base motion as a function of frequency.

March 6, 2003

MEIT-2003 / Section 14 / Page 9

Passive Vibration Isolation

- Select spring stiffness, mass, and damping for attenuation
- Reduce break frequency by minimizing spring stiffness *Typically not desirable to increase isolated mass*
- Select damping to trade between damped resonance and rate of attenuation

Transmissibility:

$$\frac{x}{x_0} = \frac{2\zeta\omega s + \omega^2}{s^2 + 2\zeta\omega s + \omega^2}$$

Natural Frequency:

$$\omega = \sqrt{\frac{k}{m}}$$

Damping Ratio:

$$\varsigma = \frac{d}{2\sqrt{km}}$$

March 6, 2003

Active Vibration Isolation

- Reduce the inertial motion of payload by sensing motion and applying forces to counter measured motion
- Active control can effectively change the system mass, stiffness, and damping *as a function of frequency*
- Whereas passive isolation only attenuates forces in passive elements, active control attenuates measured motion
 - Only active control can mitigate payload response to payload-induced vibrations
- Requires power, sensors, actuators, control electronics (analog and digital)

Active Control Illustration

Consider the transfer function from base position to mass displacement:

$$P = \underbrace{ds + k}_{ms^2 + ds + k} \qquad \mathbf{x}_{in} \qquad \longrightarrow \qquad \mathbf{P} \qquad \longrightarrow \qquad \mathbf{x}_{out}$$

Now measure the displacement and "feed it back" with gains (K_a, K_v, K_p) and a control law given by $G = -K_a s^2 - K_v s - K_p$

The closed loop transfer function becomes:

Active Isolation Example

<u>Recall the Spring-Mass-Damper Example</u> Equation of motion: $m\ddot{x} + d(\dot{x} - \dot{x}_0) + k(x - x_0) = F_{dist} + F_{act}$

Consider the control law:

$$F_{act} = -K_a \dot{x} - K_v (\dot{x} - \dot{x}_0) - K_p (x - x_0)$$

The resulting closed loop transmissibility is:

$$\frac{x}{x_0} = \frac{2\varsigma_{cl}\omega_{cl}s + \omega_{cl}^2}{s^2 + 2\varsigma_{cl}\omega_{cl}s + \omega_{cl}^2}$$

and the closed loop natural frequency and damping become:

March 6, 2003

Fundamentals of Microgravity Vibration Isolation

Passive IsolationActive IsolationTransmissibility:
$$\frac{x}{x_0} = \frac{2\varsigma\omega s + \omega^2}{s^2 + 2\varsigma\omega s + \omega^2}$$
 $\frac{x}{x_0} = \frac{2\varsigma_c l}{s^2 + 2\varsigma_c l} \frac{\omega_c l}{\omega_c l} s + \frac{\omega_c l}{c}^2$ Natural Frequency: $\omega = \sqrt{\frac{k}{m}}$ $\omega_{cl} = \sqrt{\frac{k + K_p}{m + K_a}}$ Damping Ratio: $\varsigma = \frac{d}{2\sqrt{km}}$ $\varsigma_{cl} = \frac{(d + K_v)}{2\sqrt{(k + K_p)(m + K_a)}}$

MEIT-2003 / Section 14 / Page 14

March 6, 2003

GATOR MIC

Active Control Concepts

However, it isn't as easy as it seems ---

• Real systems aren't simple one degree of freedom lumped masses with discrete springs and dampers.

• Control system design is a function of system properties which typically aren't well known.

The two key control design issues are *performance* and *robustness*.

•*Performance*: how well is isolation achieved?

•*Robustness*: how well are uncertainties tolerated by the control system?

Key Control Issues

Robustness and **Performance**

of a closed loop system are *always* in opposition

- » Robustness to uncertainties:
 - » umbilical properties
 - » structural flexibility
 - » mass and inertia variations
 - » sensor & actuator dynamics

- » Performance:
 - » base motion attenuation
 - » payload disturbances
 - » forced excitation

Control Challenges

- » Robustness to uncertainties:
 - » umbilical properties
 - » structural flexibility
 - » mass and inertia variations
 - » sensor & actuator dynamics
- » Performance:
 - » base motion attenuation
 - » payload disturbances
 - » forced excitation

g-LIMIT 6DOF, Acceleration Time Response (X-axis)

Base acceleration = $1.6 \sin(0.01 \text{ hz*t})+16 \sin(0.1 \text{ hz*t})+160 \sin(1 \text{ hz*t})+1600 \sin(10 \text{ hz*t})+16000 \sin(100 \text{ hz*t})$ March 6, 2003 MEIT-2003 / Section 14 / Page 18

Fundamentals of Microgravity Vibration Isolation

March 6, 2003

MEIT-2003 / Section 14 / Page 19

Microgravity Vibration Isolation Systems may require more advanced control technology

- Multivariable coupling between sensor-actuator pairs
- Complex and uncertain structural dynamics
- Considerable variation in payload properties
- Control / structure interaction

Classical Control:

Well developed / mature theory

Modern Control:

- Multivariable, linear, uncertain dynamic systems
- Distinct set of analysis and design tools

Intelligent Adaptive Control:

- Autonomous adaptation
- Minimal sustaining engineering
- Robust performance

Further Reading:

- Grodsinsky C. and Whorton, M., "Survey of Active Vibration Isolation Systems for Microgravity Applications," *Journal of Spacecraft and Rockets*, Vol. 37, No. 5, Sept. – Oct. 2000.
- 2. Knospe, C. R., Hampton, R. D., and Allaire, P. E., "Control Issues of Microgravity Vibration Isolation," *Acta Astronautica*, Vol. 25, No. 11, 1991, pp. 687-697.
- 3. Kuo, Benjamin C., <u>Automatic Control Systems</u>, Prentice-Hall, 1987
- 4. Thomson, William T., <u>Theory of Vibration With Applications</u>, Prentice-Hall, 1988.