

Section 15: Survey of Microgravity Vibration Isolation Systems

Dr. Mark Whorton Principal Investigator for g-LIMIT NASA Marshall Space Flight Center

March 6th, 2003

Outline:

- Review of Vibration Isolation Technology
- Survey of Flight Systems
- Future Trends
- Flight System Availability on ISS

The ISS will provide a world-class research facility for microgravity science

Microgravity vibration isolation systems are required to provide an environment conducive to world-class science research

March 6th, 2003

Why is Vibration Isolation Necessary for ISS?

Comparison of Approaches		
Туре	Advantages	Disadvantages
Passive	·Low Cost ·Low Maintenance ·Reliable ·No Power	 Isolate only higher freq (> 1-10 Hz) Typically requires large volume Cannot mitigate payload induced vibrations Resonance vs attenuation trade
Active Rack Level (ARIS)	•Low freq attenuation •Least power & volume (mult. payloads/single unit) •standard user interface	•Cannot mitigate payload induced vibrations •requires payloads to be "good neighbors" •highly sensitive to crew contact •Potential high maintenance
Active Sub- Rack Level (g-LIMIT, STABLE, MIM)	 Low freq attenuation Mitigates payload induced vibration can be optimized for individual user 	•More power & volume than rack-level (single payload/single unit)

Introduction

- To date, three microgravity vibration isolation systems have been flight tested in orbit:
- STABLE (Suppression of Transient Accelerations By LEvitation)
- ARIS (Active Rack Isolation System)
- MIM (Microgravity Vibration Isolation Mount)
- Each system will be surveyed using data provided by each investigation team

The STABLE Vibration Isolation System

- Payload-level Isolation System
- Developed jointly by NASA MSFC and Boeing (formerly MDAC)
- Flown on STS-73/USML-02, October 1995
- A Faster/Better/Cheaper approach
- 4.5 months from ATP to delivery
- Utilized COTS components
- Necessitated robust control design
- Supported a fluid physics experiment

Integration of Payload into STABLE Locker

March 6th, 2003

STABLE Flight Unit

March 6th, 2003

Payload Specialist Dr. Fred Leslie operating STABLE

March 6th, 2003

STABLE Control System Block Diagram

STABLE: Typical Active Isolation Time Response

STABLE: Typical Active Isolation Frequency Response

STABLE: Typical Active Isolation Attenuation

MEIT-2003 / Section 15 / Page 15

March 6th, 2003

MIM Background

- The Microgravity Vibration Isolation Mount (MIM) has been developed over the past 10 years by CSA under the direction of Bjarni Tryggvason
- 2 MIM versions have been produced to date:
 - First version of MIM is known as MIM-1:
 - In operation for two years onboard Russian Mir space station since May 1996;
 - accumulating over 3000 hours.

•

MIM Background

- Second version of MIM is known as MIM-2:
 - Flown onboard the Space Shuttle during mission STS-85 with Canadian Astronaut Bjarni Tryggvason;
 - MIM-2 acquired a total of 100 hours of operations.

MIM-2 Description:

- •8 wide gap Lorentz force actuators(magnets on flotor & coils on stator);
- •3 light emitting diodes imaged on 3 position sensitive devices (PSD);
- •6 accelerometers for monitoring stator & flotor acceleration

MIM-2 Summary for STS-85

Data filtered by a 100 Hz low-pass filter and sampled at 1000 samples per second March 6th, 2003 / Section 15 / Page 19

MIM-2 Summary for STS-85

Data filtered by a 100 Hz low-pass filter and sampled at 1000 samples per second March 6th, 2003 MEIT-2003 / Section 15 / Page 20

MIM-2 summary for STS-85

- MIM has shown the capability to isolate down to 0.3 Hertz with that limit related to the PSD case material
- Models indicate that with current umbilical and replacement of PSDs, isolation cutoff frequencies of approximately 0.04 Hertz can be achieved
 - To reach 0.01 Hertz, improvements to the umbilical are required

Survey of Microgravity Vibration Isolation Systems

March 6th, 2003

Survey of Microgravity Vibration Isolation Systems

MVIS Hardware

March 6th, 2003

Predicted Isolation Transfer Function

Isolation Performance Predicted for MVIS

MEIT-2003 / Section 15 / Page 25

MIM Base Unit: Two Stage Isolation to Allow Investigation of G-Jitter Effects

March 6th, 2003

Survey of Microgravity Vibration Isolation Systems

March 6th, 2003

MIM Base Unit: Driven Accelerations on Top Flotor

March 6th, 2003

MEIT-2003 / Section 15 / Page 31

Schedule

MVIS is currently being manufactured

- FCE mounted component were delivery to ESA in early November for vibration testing
- Flight harness will be delivered to ESA in December
- Remaining flight hardware to be delivered to ESA by mid 2003
 MIMBU configuration is complete
- Work is on hold until MVIS is completed
- Launch is expected in 2005

The Active Rack Isolation System (ARIS)

- Rack-level Isolation System
- Developed by Boeing
- Flown on RME 1313 / MIR Spacehab STS-79, August 1996
- Over 1700 test runs for Isolation Characterization Experiment completed since June 2001
- Planned Utilization:
 - EXPRESS Racks
 - Fluid Combustion Facility
 - Materials Science Research Facility

Boeing Active Rack Isolation System (ARIS)

MEIT-2003 / Section 15 / Page 34

ARIS ICE 1/3-Octave Band Acceleration Measurements

March 6th, 2003

MEIT-2003 / Section 15 / Page 36

ARIS EXPRESS Predicted Performance at Assembly Complete

MEIT-2003 / Section 15 / Page 37

ARIS Utilization

Focal Points:

- Remove conservatism in models
- Increase control bandwidth
- Improve umbilical design
- Investigate z-panel dynamics
- Investigate rack stiffness and damping enhancements
- Payload scheduled control design

g-LIMIT

A Vibration Isolation System for the Microgravity Science Glovebox

- Designed & built in-house by MSFC
- Characterized as a MSG Glovebox Investigation
- Manifested for launch:
 - ULF1 Mission; 3/1/03
- Characterization testing:
 - Increment 7
- Payload support operations after characterization

Survey of Microgravity Vibration Isolation Systems

g-LIMIT Flight Unit

Dimensions: ~ 14" x 16" footprint ~ 10" tall

March 6th, 2003

g-LIMIT System Assembly

MEIT-2003 / Section 15 / Page 41

THE INVESTIGATOR MICROGRAVITY SHARE

g-LIMIT in MSG

March 6th, 2003

March 6th, 2003

g-LIMIT 6DOF, Acceleration Time Response (X-axis)

Controllers Technologies to be Tested using g-LIMIT

- Baseline classical controllers (Jackson, Kim, Whorton)
- Fixed Order H_2 / μ designs (Whorton)
- H_{∞} designs (Whorton)
- H₂ designs (Hampton, Calhoun, Whorton)
- Interval Model Controller (Tantaris, Keel)
- Student classical designs
- Adaptive controllers (pending software update)

Summary of Flight Systems Availability:

STABLE:

No current plans to fly on ISS

MIM-2, et.al.:

Use on ISS coordinated through CSA

ARIS:

- 10 units currently to be delivered to ISS
 - Express, FCF, MSRF

g-LIMIT:

- Employed in MSG
- Flight Unit, Spare, & Derivatives applicable elsewhere

Further Reading:

- Grodsinsky C. and Whorton, M., "Survey of Active Vibration Isolation Systems for Microgravity Applications," *Journal of Spacecraft and Rockets*, Vol. 37, No. 5, Sept. – Oct. 2000.
- 2. Bushnell, G. S., and Becraft, M. D., "Microgravity Flight Characterization of an International Space Station Active Rack Isolation System," AIAA Paper # TBD, Presented at the 2002 World Space Congress...
- 3. Nurre, G. S., Whorton, M. S., Kim, Y., Edberg, D. L., and Boucher, R., "Performance Assessment of the STABLE Microgravity Vibration Isolation Flight Demonstration," submitted for publication to *Journal of Spacecraft and Rockets*.
- 4. Tryggvason, B. V., Stewart, B. Y., DeCarufel, J., and Vezina, L., "Acceleration Levels and Operation of the Microgravity Vibration Isolation Mount (MIM) on the Shuttle and Mir Space Station", AIAA Paper No. AIAA-99-0578, presented at the 37th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 11-14, 1999.
- 5. Jackson, Kim, Whorton, "Design and Analysis of the g-LIMIT Baseline Vibration Isolation Control System," AIAA Paper No. 2002-5019, Presented at the 2002 AIAA Guidance, Navigation, and Control Conference, Monterey, CA, August 5-8, 2002.