

Section 12 Analysis Techniques for Quasi-steady Data

Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center

March 2-4, 2004

MEIT-2004 / Section 12 / Page 1

Acronyms and Abbreviations

μg	micro-g, 10 ⁻⁶ g	MAMS	Microgravity Acceleration Measurement System
СМ	Center of Mass	NASA	National Aeronautics and Space Administration
CMG	Control Moment Gyro	OARE	Orbital Acceleration Research Experiment
CGF	Crystal Growth Facility	OSS	OARE Sensor Subsystem
сwс	Collapsible Water Container	PAD	PIMS Acceleration Data
DC	Direct Current (mean value)	PIMS	Principal Investigator Microgravity Services
ER	EXPRESS Rack	QTH	Quasi-steady Three Dimensional Histogram
EVA	Extravehicular Activity	RMS	Root-Mean-Square
EXPRESS	Expedite the Processing of Experiments to the Space	RSS	Root-Sum-Square
	Station	s, sec	Seconds
FGB	Functionalui Germatischeskii Block	SAMS	Space Acceleration Measurement System
g	acceleration due to free-fall (9.81 m/s ²)	TEA	Torque Equilibrium Attitude
gg	Gravity gradient	TMF	Trimmed Mean Filter
GMT	Greenwich Mean Time	SSA	Space Station Analysis Coordinate System
GNC	Guidance, Navigation and Control	STS	Space Transport System
GRC	Glenn Research Center	USML-2	2 nd United States Microgravity Laboratory
Hz	Hertz	USMP-3	3 rd United States Microgravity Payload
ISS	International Space Station	ХРОР	X Principal Axis Perpendicular to the Orbit Plane
LAB	Laboratory	XVV	X body axis toward the Velocity Vector
LAB1O2	US LAB Overhead Bay #2	YVV	Y-axis toward Velocity Vector
LMS	Life and Microgravity Spacelab	ZLV	Z-axis in Local Vertical
LVLH	Local Vertical Local Horizontal		

Overview of Topics

Topics for discussion

- OARE and MAMS Data Description
- Description of trimmed mean filter (TMF)
- Bias calibration
- Data storage
- Analysis and display of quasi-steady data

OARE and MAMS Data Description

OARE and MAMS Data

- OARE and MAMS data are recorded and stored in an inertial frame of reference
 - an acceleration of the vehicle in the positive x-axis direction is reported as a positive x-axis acceleration even though a free particle may appear to move in the negative x-axis relative to the accelerating vehicle
- MAMS OSS (OARE Sensor Subsystem) is located onboard the International Space Station, inside the US Module.
 - Since Flight 6A (April 2001), EXPRESS Rack 1, LAB102
- OARE stored in Orbiter body coordinates and MAMS OSS Trimmed Mean Filtered (OSSBTMF) data is stored in Space Station Analysis Coordinates.
- Sensor Coordinate systems
 OARE vs. Orbiter Body

$$\begin{bmatrix} X_b \\ Y_b \\ Z_b \end{bmatrix} = \begin{bmatrix} X_{OARE} \\ Z_{OARE} \\ -Y_{OARE} \end{bmatrix}$$

MAMS OSS vs. SSA

$$\begin{bmatrix} X_{A} \\ Y_{A} \\ Z_{A} \end{bmatrix} = \begin{bmatrix} X_{OSS} \\ -Z_{OSS} \\ Y_{OSS} \end{bmatrix}$$

Trimmed Mean Filter Definition

Trimmed Mean Filter Description

- The trimmed mean filter (TMF) is an adaptive, robust¹ estimator designed to compute a "good" estimate of the quasi-steady acceleration signal by rejecting higherfrequency transients (thruster firings, crew activity, etc.)
- TMF utilizes a sliding window to operate on a segment of data of pre-defined length
- The sliding window operates such that a segment of the Nth window of data is included in the (N+1)th window, resulting in some portion of data being considered in two consecutive TMF operations.

1. Hogg, Robert V., "Adaptive Robust Procedures: A Partial Review and Some Suggestions for Future Applications and Theory", Journal of the American Statistical Association, Vol. 69 (December 1974).

Trimmed Mean Filter Process

Trimmed Mean Filter Q Statistic

Trimmed Mean Filter Description

- Consider a window of data of length 48 seconds.
 - Step 1 Divide the data into overlapping segments
 - Step 2 Sort the acceleration data in order of increasing magnitude
 - Step 3 Calculate the parameter Q according to the equation below

$$Q = \frac{\left[U(20\%) - L(20\%)\right]}{\left[U(50\%) - L(50\%)\right]}$$

- where U(x%) is the average of the upper x% of the ordered sample and L(x%) is the average of the lower x% of the ordered sample
- Q is a measure of the departure of the distribution contained in the sample from a normal distribution, similar to kurtosis

Trimmed Mean Filter Alpha Parameter

Trimmed Mean Filter Description

 Step 4A - Trim off each tail of the ordered distribution according to the value of the TMF parameter alpha

$$alpha(Q) = \begin{cases} 0.05 & Q \le 1.75 \\ 0.05 + 0.35 * \frac{(Q - 1.75)}{0.25} & 1.75 < Q < 2.0 \\ 0.4 & Q \ge 2.0 \end{cases}$$

• Step 4B - The quasi-steady acceleration signal is computed to be the arithmetic mean of the trimmed data set.

More Trimmed Mean Filter Information

Trimmed Mean Filter Description

- The TMF assumes the signal distribution is symmetric, but not necessarily Gaussian. For a pure Gaussian distribution of data, 5 percent of the data is trimmed from each tail of the original sorted distribution
- For a given segment of time, a maximum of 40 percent of the data is trimmed off <u>each tail</u>.
- Typical 30-50 percent of the original data being rejected for ISS Operations. (~86% of the time less than 50 percent is rejected.)

Trimmed Mean Filter Parameters

•Most PIMS implementations of the TMF operate on 480 sample window every 16 seconds (48/16)*.

•For past shuttle flights, OARE data was processed with a 500 sample window every 25 seconds (50/25).

•Other parameter pairs used in the past include:

•3000 samples every 8 seconds(300/8)
•3000 samples every 30 seconds(300/30)
•3200 samples every 16 seconds(320/16)

•Example shows MAMS OSSRAW, Z-axis data from ISS subjected to 48/16 and 320/16 trimmed mean filters.

*Note: When referring to TMF parameters, often the number of seconds in a sample window is used. MAMS and OARE raw data is recorded at 10 samples per second, so a 480 sample every 16 seconds filter is 48/16.

March 2-4, 2004

OARE and MAMS Bias Calibrations

OARE/MAMS Bias Operations

- Initial transient in OARE bias is caused primarily by dielectric charging of the ceramic insulator material that surrounds the cylindrical axis electrodes
- Dielectric charging effects not seen in MAMS. However there is a transient effect in bias due to temperature during warm up period of 4 to 6 hours.
- Bias calibrations are nominally performed throughout each mission at regularly programmed intervals
 - in-flight correction for bias
 - performed for the following additional conditions
 - sensor instrument temperature change of 5 degrees Celsius since the completion of the last calibration sequence
 - sensor "down ranges" to range not calibrated in the previous calibration sequence
 - ground command initiation

Bias Calibration Sequence

OARE/MAMS Bias Operations

- Bias calibration sequence of steps for a given axis
 - 48 seconds of data collected (Measurement 1)
 - Trimmed mean filter (TMF) applied to 480 data points
 - sensor is rotated 180 degrees and another 48 seconds of data are collected
 - TMF applied to the second 480 data points
 - the outputs of the two TMF operations are summed and divided by two
 - resulting value represents the bias value
- It is assumed that between successive data collections during bias calibrations, that the quasi-steady vector does change significantly.
 - IDEAL CASE: Quasi-steady environment is identical for both data takes.

Bias Calibration Illustration

X-Axis Bias Calibration Illustration

Quasi-Steady Plot Types

Display Format	Notes	
Acceleration versus Time	precise accounting of measured data with	
	respect to time; best temporal resolution	
Interval Min/Max Acceleration versus Time	displays upper and lower bounds of peak-to-	
	peak excursions of measured data	
	good display approximation for time histories	
	on output devices with resolution insufficient to	
	display all data in time frame of interest	
Interval Average Acceleration versus Time	provides a measure of net acceleration of	
	duration greater than or equal to interval	
	parameter	
Trimmed Mean Filtered Acceleration versus	removes infrequent, large amplitude outlier data	
Time		
Quasi-Steady Mapped Acceleration versus	use rigid body assumption and vehicle rates and	
Time	angles to compute acceleration at any point in	
	the vehicle	
Quasi-Steady Three-Dimensional Histogram	summarize acceleration magnitude and	
(QTH)	direction for a long period of time	
	indication of acceleration "center-of-time" via	
	projections onto three orthogonal planes	

Time Domain Plots

- No frequency transform applied to quasi-steady acceleration data; looking at time series plot and noting orbital rate is frequency domain analysis.
- Data recorded at a rate of 10 samples per second
- Time domain plot types available
 - Raw acceleration data Not recommended for general consumption (use with caution)
 - g vs. t plot of 10 sample per second data
 - TMF acceleration data
 - g vs. t plot, t is a function of the TMF interval selected
 - Interval average acceleration data

$$x_{avgk} = \frac{1}{M} \sum_{i=1}^{M} x_{[(k-1)*M+i]} \qquad k = 1, 2, \dots, \left\lfloor \frac{N}{M} \right\rfloor$$

- M=number of points in the time series interval selected, typically 1 second intervals
- N=total number of points in the time series being considered

Acceleration Domain Plots

Analysis and Display of Quasi-steady Data

Acceleration domain plot types available

- Quasi-steady Three-dimensional Histograms (QTH)
 - displays a summary of acceleration vector magnitude and alignment projected on three orthogonal planes
 - uses a 2-dimensional histogram for each combination of the three axes:
 XY, XZ, YZ
 - accumulates the number of times the acceleration vector magnitude falls within user-defined 2-dimensional bins
 - count is divided by the total number of points to normalize the results
 - gives a percentage of time representative of the magnitude and orientation of the quasi-steady acceleration vector
 - Makes meaningful comparisons of quasi-steady data between STS missions, ISS increments, or other periods of interest.

Steps for Producing an Example QTH Plot

Analysis and Display of Quasi-steady Data

March 2-4, 2004

Mapping of Quasi-steady Data

- Additional options for quasi-steady plot types
 - Mapping is an estimate of the quasi-steady vector at a location other than measurement location. (e.g. the vehicle center of mass (CM) or to an experiment location)
 - Rigid body assumptions, no relative motion of "vehicle parts"
 - requires use of the vehicle (Orbiter or ISS) telemetry data
 - mapping is accomplished via the following equations

$$A^{EL} = A^{ML} - A^{ML}_{gg} - A^{ML}_{rot} + A^{EL}_{rot} + A^{EL}_{gg}$$
$$A^{CM} = A^{ML} - A^{ML}_{gg} - A^{ML}_{rot}$$

- Where
 - ML = measurement location
 - EL = experiment location
 - A_{gg} = gravity gradient component of acceleration
 - A_{rot}^{99} = rotational components of acceleration
- A_{gg} and A_{rot} for experiment location are zero when mapping to CM

Gravity Gradient Equation

Analysis and Display of Quasi-steady Data

- gravity gradient component
 - The gravity gradient component are accelerations from forces acting on a particle that is away from the center of gravity.
- An independent particle will tend to accelerate towards the CM if it is in front or behind the CM or to the left or right of the vehicle. The gravity gradient will tend to accelerate a particle away from the CM if it is above or below the CM.²

- A_{gg} at any location is given by the equation (in μg):

$$A_{gg} = \left(\frac{g_e \cdot r_e^2}{r_o^3}\right) \cdot \begin{bmatrix} rx \\ ry \\ -2 \cdot rz \end{bmatrix} \cdot \left(\frac{1x10^6}{g_e}\right)$$

- Where
 - r_e is the radius of the Earth
 - r_0 is the distance of the vehicle to center of the Earth
 - [x,y,z] is the distance from the CM
 - $g_e = 9.81 \text{ m/s}^2$

2. Matisak, B.P., Rogers M.J.B, Alexander J.I.D., "Analysis of the Passive Accelerometer System (PAS) Measurements During USML-1", AIAA 94-0434 (January 1994).

Gravity Gradient Equation for LVLH Attitudes

Analysis and Display of Quasi-steady Data

 For LVLH attitudes, the vehicle is rotating about a single axis and an approximation can be used²:

$$\left(\frac{g_e \cdot r_e^2}{r_o^3}\right) = \omega_o^2$$

- Where
 - ω_{o} is the angular velocity of the vehicle
- For Shuttle flights, this approximation was frequently used.
- For ISS, extensive XPOP attitude in early flights will limit it's usefulness.

Rotational Acceleration Equation

- rotational component
 - The rotational acceleration effects are comprised of tangential and radial components.
 - The tangential acceleration components contribute mainly during thruster firings and are not part of the quasi-steady domain. Therefore they are assumed negligible.
 - The radial components are given:

$$A_{rot} = \begin{bmatrix} -(\omega_y^2 + \omega_z^2) & \omega_x \omega_y & \omega_x \omega_z \\ \omega_x \omega_y & -(\omega_x^2 + \omega_z^2) & \omega_y \omega_z \\ \omega_x \omega_z & \omega_y \omega_z & -(\omega_x^2 + \omega_y^2) \end{bmatrix} \mathbf{x} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- Where
 - $\omega_{x_1} \omega_{y_2} \omega_{z}$ are the rotational velocities about the x,y,z axes
 - [x,y,z] is the distance from the CM

Frame of Reference and Coordinate Systems

- Additional options for quasi-steady plot types
 - Select frame of reference as either inertial or science
 - Select the coordinate system based on vehicle
 - For Orbiter, use either Orbiter body, Orbiter structural, or specialized coordinate system (i.e., CGF coordinates on USML-2)
 - For ISS, many coordinates systems are available

Data Storage

Post-Mission Quasi-steady Data Storage

- OARE data available on request. Stored on NASA GRC file server beech.grc.nasa.gov, which has been made unavailable to the public via WWW.
- MAMS data is stored on NASA GRC file server at pims.grc.nasa.gov
 - ftp and automated web server to generate MATLAB plots and distribute data on an as-needed basis
 - ossbtmf (TMF and bias compensation applied
 - ossraw 10 samples per second data + temperature + bias status

Example Raw and TMF Plots

- Raw OARE acceleration data
 - Figure 12-1 LMS Water Dump and Attitude Change
 - Figure 12-3 USML-2 Solar Inertial Attitude
 - Figure 12-5 USMP-3 Vernier Thruster Firings
- TMF OARE acceleration data
 - Figure 12-2 LMS Water Dump and Attitude Change
 - Figure 12-4 USML-2 Solar Inertial Attitude
 - Figure 12-6 USMP-3 Vernier Thruster Firings
 - Figure 12-7 USML-2 Supply Water Dump

Example QTH Plots

- QTH plots
 - Figure 12-8 LMS Mission Plot
 - Figure 12-9 USML-2 Solar Inertial Attitude
 - Figure 12-10 USMP-2 Mission Plot
 - Figure 12-11 LMS Crew Active Period
 - Figure 12-12 LMS Crew Sleep Period

OARE, Row Data OARE Location

Frame of Reference: Orbiter LMS Body Coordinates

MEIT-2004 Figure 12-1: OARE Raw Data During Water Dump and Attitude Change from STS-78 (LMS)

MATLAB: 05-Aug-1997, 10:34 am

MEIT-2004 Figure 12-2: OARE TMF Data During Water Dump and Attitude Change from STS-78 (LMS)

MEIT-2004 Figure 12-3: OARE Raw Data During Solar Inertial Attitude from STS-73 (USML-2)

MEIT-2004 Figure 12-4: OARE TMF Data During Solar Inertial Attitude from STS-73 (USML-2)

MATLAB: 02-Oct-1997, 06:09 pm

MATLAB: 02-Oct-1997, 06:13 pm

MEIT-2004 Figure 12-8: Quasi-Steady Three-Dimensional Histogram Plot for Entire STS-78 (LMS) Mission

MEIT-2004 Figure 12-9: Quasi-Steady Three-Dimensional Histogram Plot for Solar Inertial Attitude from STS-73 (USML-2)

OARE Location

MET Start at 000/00:12:16.920 USMP-2 (STS-62) Mission Plot

OARE Location

MET Start at 008/17:00:16.920 LMS Mission – Crew Active Periods

MEIT-2004 Figure 12-11: Quasi-Steady Three-Dimensional Histogram Plot Crew Active Period STS-78 (LMS)

OARE Location

MET Start at 009/09:00:07.920 LMS Mission – Sleep Cycles

MEIT-2004 Figure 12-12: Quasi-Steady Three-Dimensional Histogram Plot Crew Sleep Period STS-78 (LMS)