

The Effect of G-Jitter on Fluid Based Experiments

Bjarni Tryggvason Canadian Space Agency

MEIT 2004

March 2-4, 2004

Cleveland, Ohio

International Space Station (ISS)

A laboratory for performing research in a free fall environment

PARTNERS United States Russia Canada Japan 11 European Nations

March 2-4, 2004

Primary Role of the ISS

- Support experiments in
 - Material Science
 - Crystal growth
 - Protein crystal growth
 - Basic fluid physics
 - Life and biological sciences
- Near free fall conditions reduce gravity driven convection by several orders of magnitude
 - potential to increase understanding of phenomena observed in ground based experiments

Confusion About Zero-G:

How far do we need to go?

Misleading Terminology

No gravity in space Zero-g Micro-g

Newton's Law of Gravitation

We are all attracted to one another

The attraction decreased with distance

Mir, STS, ISS orbit only 300 km above the Earth's surface, which is 6374 km from c.m.

Newton's Law: No Micro-G Near Earth!

Re:6374 km Me = $5.9736*10^{24}$ kg G = $6.67259*10^{-11}$ m³/kg/s²

At the Earth's surface At ISS altitude $g_e = 9.8108 \text{ m/s}^2$ $g_e = 8.6864 \text{ m/s}^2$

Gravitational Acceleration Due to the Earth

Of What Concern is a Little Micro-g?

Earth is kept in orbit by 600 micro-g

Pluto is kept in orbit by 0.38 micro-g

The Free Fall State

Spacecraft are in *near ideal* state of *free fall* as they orbit Earth, i.e., accelerating towards the Earth at nearly *1-g*. Objects within a spacecraft are *in nearly the same state* of *free fall*. Hence *relative accelerations* of objects are *very small: micro-g range*. Hence *internal stresses* are *very small* compared to what they would be on the ground.

.....but stresses are not zero!

Disturbances from the Ideal Free Fall

Quasi-Static (<< 0.01 Hertz) Disturbances

Atmospheric Drag

Order of 1 micro-g, with variations of the same order

Gravity Gradients

0.26micro-g/m from spacecraft c.m. vertically 0.13micro-g/m from spacecraft c.m. horizontally

Spacecraft Rotations

ISS rotates once per orbit (92minutes) Centripetal accelerations are 0.13micro-g/m from axis of rotation

ISS Torque Equilibrium Attitude

Of What Concern is a Little Micro-g?

Displacement time scales:

At the Earth's surface an object falls 10cm in 0.143 sec.

In the micro-g environment inside the ISS it takes 142.8 sec.

On object released inside the ISS would take 638.7 sec. to strike a wall.

Disturbances

- Quasi-Static (<< 0.01 Hertz) Disturbances
 - External Disturbances
 - Gravity Gradient Effects
 - Atmospheric Drag
 - Spacecraft Rotations
- Vibratory (> 0.01 Hz)
 - Spacecraft Internal Disturbances
 - Attitude Controllers
 - Power Generation Systems
 - Thermal and Environmental Control Systems
 - Maintenance Systems
 - Crew Disturbances
 - Experiment Disturbances

The Micro-g Environment

- Space Shuttle and Space Station provide a unique free-fall environment for science experiments
 - Fluid physics
 - Material science
- However, the environment is not the ideal disturbance free environment that the science community expected
- The quasi-static (<0.01Hz) disturbances to the free fall state are of the order of micro-g (10⁻⁶g)
- Onboard disturbances lead to vibratory disturbances of milli-g (10⁻³g), three orders magnitude higher than the often-quoted micro-g (10⁻⁶g)

Experiments Conducted on Mir and the Space Shuttle

- ISS Phase-I on Mir:
 - Measurement of diffusion in liquid metal systems
 - Observations of nucleation in glasses
 - Particle pushing
- STS-85:
 - Brownian motion (basis for diffusion)
 - Motion of encapsulated bubbles
 - Interface dynamics in a liquid-liquid system
 - Interface dynamics in liquid-vapour systems

QUELD-II Mounted on MIM-1 as in Mir Installation

Queen's University Experiment in Liquid Diffusion

- Operational on Mir space station from May 1996 to January 1998
 Operating temperature up to 900 °C
- Two independent furnaces
- Automatic sample processing

MIM-1 on the Mir Space Station

The Microgravity Vibration Isolation Mount

- Isolates experiments from spacecraft vibrations
- 6 DOF magnetic levitation system
- Optical tracking system and accelerometers for monitoring and control of the flotor
- Provides data acquisition services and control functions to an experiment mounted on the flotor
- Capable of "shaking" an experiment with acceleration levels from several micro-g to 25 milli-g over range 0.01 Hz to 50 Hz.

MIM-2 on Shuttle Mission STS-85

Determining Intrinsic Diffusion Coefficient

- Free fall environment eliminates buoyancy effects.
- Effect of the container is controlled by varying the sample diameter.
- Sample design controls surface tension induced (Marangoni) convection.
- An isothermal furnace reduces thermal gradient induced motion.
- G-jitter adds to mixing in the fluid

Comparison of Terrestrial and On-Orbit Data

• CdIn/CdSn diffusion couple specimens processed terrestrially and in on the Mir space station free fall environment at 690 C for 90 minutes

CdIn/CdSn diffusion couple for specimen at 690 C for 90 minutes

March 2-4, 2004

Diffusion in Liquid Metals Reginald Smith, Queens University

Brownian Motion

Bjarni V Tryggvason Canadian Space Agency

Effect of g-jitter on the random drift of micron sized particles in a fluid, under condition of: Non-isolating mode, i.e., g-jitter present Isolated mode Driven mode Sinusoidal Random broad band

Displacement (microns)

Brownian Motion: 5 Micron Diameter: Isolated

---- Expected Mean

Brownian Motion:

5 Micron Diameter: Random Vibration

Brownian Motion:

5 Micron Diameter: 1Hz Oscillation

March 2-4, 2004

Brownian Motion:

1 Micron Diameter: Isolated

March 2-4, 2004

Fluid Behavior In Absence Of Gravity: Confined Fluids and Phase Change

Charles A. Ward Thermodynamics and Kinetics Laboratory, University of Toronto

March 2-4, 2004

Configuration of a Confined Fluid at $g \rightarrow 0$

Prediction from thermodynamics

– Liquid

Way it looks and the Way It Should Look!

J. Chem. Phys., Vol. 112, No. 16, 22 April 2000

Water in glass cylinder, if

$$\mu^{L} = \mu^{V} = \mu^{SV} = \mu^{SL}$$

$$P^{V} - P^{L} = \gamma^{LV} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right)$$

$$n^{SV} = f(T, P^{V}) \Longrightarrow \theta = g(T, P^{V})$$

MEIT-2004 / Section 6 / Page 32

March 2-4, 2004

Experimental Apparatus Used to Study Liquid-Vapour Phase Change Processes

1. Measure in *one horizontal direction*.

- A. No evaporation when pressure was 820 Pa.
- B. Pressure in the vapor 775Pa,
 - $j = 0.407 \pm 0.006 \text{ g/m}^2\text{s}$

2. Without opening the system, rotate the 3dimensional positioner 90 ° and measure in the second horizontal direction.

Temperature During Steady State Evaporation of Water

March 2-4, 2004

Protein Crystal Growth & Residual Motion

Jurgen Sygusch Biochemistry Université de Montréal Montréal, Canada

Residual Motion on STS-95 Ferritin PCG

Drifting PPG₁₀ crystals on ISS

Residual Motion and ISS acceleration levels

Accelerations on PPG₁₀ crystals during and after growth

Trajectories of Crystal Motion

Crystals undergo diverse residual motion in microgravity

Motion compromises CDZ

Because $\rho_{crystal} > \rho_{medium} > \rho_{CDZ}$ CDZ movement in direction opposite to crystal motion

Result: CDZ deformation and suppression

Mitigation of residual acceleration is needed

Effect of G-Jitter on the Motion of an Encapsulated Bubble

Kameil Rezkallah, University of Saskatchewan

The motion of a bubble several mm in diameter was recorded on video The motion was compared for cases with and without isolation

Effect of G-Jitter on Motion of a Bubble Encapsulated in Water (Rezkallah, et. Al., Experiment performed on STS-85)

March 2-4, 2004

MEIT-2004 / Section 6 / Page 44

Our Experience Base on Orbit: Micro!

Total time on orbit for the space shuttle:

112 flights at 10 days \sim 1120 days \sim 3 years

ISS crewed time thus far ~ 2 years, but with only a small experiment complement

This is a small experience base, compared to our ground experience base: ~ 400 Universities

The Vibration Environment on the Mir and the Shuttle

MIM-1 Operational on Mir May 1996 to January 1998 3000+ hours of operation

MIM-2 On shuttle mission STS-85, August 7-19, 1997 100 hours of operation

Acceleration data collected at 1000 samples/s for short (several minutes) and for up to seven days continuously at lower sampling rates (as low as 5 samples/s)

ISS Vibratory Requirement for Isolated Payloads

March 2-4, 2004

MEIT-2004 / Section 6 / Page 47

ISS Vibratory Requirement for Isolated Payloads

Power Spectral Densities for Accelerations of the Shuttle and MIM Flotor

DPID: X,Y~2 Hz Z~0.1Hz File: D7081649

March 2-4, 2004

Power Spectral Densities for Accelerations of the Shuttle and MIM Flotor

DPID: X,Y~2 Hz Z~0.1Hz

File: D7081649

March 2-4, 2004

 1.10^{3}

100

Power Spectral Densities for Accelerations of the Shuttle and MIM Flotor

0.01

0.1

Frequency (Hz)

1

DPID, XY: 2 Hertz, Z: 0.1 Hertz File: D7081621

10

MIM Driven Modes

Mir Accelerations: max,min,mean, rms over 10s

Mean Acceleration on Mir: Expanded Scale

March 2-4, 2004

Accelerations on Mir: Power Spectral Density

Accelerations on Mir: Power Spectral Density

Summary of Acceleration Environment on Mir and the Shuttle

- Over most of the frequency band covered by the ISS specification for an isolated rack: the acceleration levels on the Mir and shuttle were below the ISS requirement for an isolated rack
- Coupled with the observed sensitivity of diffusion and internal fluid flow to g-jitter at these levels: this indicates that the current specification for isolated racks on the ISS is not conservative for fluid based experiments

CSA Science Plan for the ISS

Three Research Facilities

ATEN	- materials science furnace
PROSPECT	- protein crystal growth facility
SURD	- Fluid science facility

Two Isolation Support Systems

- MIMBU Microgravity-vibration Isolation Mount Base Unit to support ATEN,PROSPECT,SURD and other science hardware
- MVIS -Microgravity Vibration Isolation Subsystem for the ESA Fluid Science Laboratory

MVIS March 2-4, 2004

MVIS Engineering Model

March 2-4, 2004

MVIS Engineering Model

MIM Base Unit

Canadian Space Agence spatiale Agency canadienne

MIM-1 supporting QUELD II experiment

MIM-1 ON MIR

The first MIM unit was launched in the Priroda laboratory module which docked with the Russian Mir space station in April 1996. The system was in operation on the Mir since May 1996, accumulating more than 3000 hours of operati supporting the following experiments:

Diffusion in liquid metals
Nucleation in glasses
Recrystallization in semiconductors
Particle transport

MIM-2 ON STS-85 An upgraded system (MIM-2) was flown on space shuttle mission STS-85 in August 1997 and was operated by Canadian astronaut Bjarni Tryggvason. The major improvements to the MIM-2 compared to the original MIM are in the design of the electronics and the electromagnet actuators.

