

Section 7

Predicting Residual Acceleration Effects on Space Experiments

Emily Nelson

Computational Microgravity Laboratory M/S 105-1, NASA Glenn Research Center Cleveland, OH 44135 Emily.S.Nelson@grc.nasa.gov

Symbols, acronyms and abbreviations

	Acronyms	
CCU	Cell Culture Unit	α=k/
CFD	computational fluid dynamics	μ
CSC	cell specimen chamber	ν
	Roman characters	ρ
а	acceleration	σ
B=ρgV	buoyancy	τ
С	concentration	
Cp	heat capacity	
D	drag	
D _C	diffusivity of species	
D _m	mass diffusivity	b
F	force	d
g	gravity	i
k	thermal conductivity	I
m	mass	m
р	pressure	n
Pr	Prandtl number=v/ α	OSC
S	source term	р
Sc	Schmidt number=v/D	qs
u	velocity	t
V	volume	
W=ma	weight	

Greek characters

k/ρc_p thermal diffusivity absolute viscosity viscosity (momentum diffusivity) density surface tension shear stress. For Newtonian fluid, 2D, cartesian:

$$\tau = \mu \left(\frac{\partial \widetilde{u}}{\partial x} + \frac{\partial \widetilde{v}}{\partial y} \right)$$

Subscripts/Superscripts

bubble
droplet
spatial index
species index
fluid medium
temporal index
oscillatory

p particle

s quasisteady

transient

How does acceleration affect experiments?

- Affects weight (loading)
- Modifies fluids transport processes
 - natural convection
 - sedimentation, settling
 - mixing, separation

- allows other phenomena to be unmasked through decreased convection
- **Changes stability thresholds**, e.g., interface between immiscible fluids, onset of convective instability, triggering of signal transduction pathways

Gravity is one type of acceleration; other accelerations can affect mass in gravity-like ways

How can we predict residual acceleration effects?

Using an appropriate model of the acceleration, analysis tools include:

- *theoretical* analysis
 - order-of-magnitude analysis
 - exact solution of a simplified problem
 - asymptotic analysis
- numerical simulation
 - traditional finite difference/finite volume/finite element approach
 - stochastic approach
- experimental testing (ground-based)
 - ground-based facilities, e.g., KC-135, drop tower
 - vibrating platforms, centrifuge, clinostat (be sure to identify/quantify local acceleration field)
- examine previous experiments/literature survey
- *insight* (and maybe a little luck)

How can we model acceleration for analysis?

- Estimate appropriate *time scale(s)* for experiment
- Separate out the various components of residual acceleration from spectral analysis or from predictions:
 - Analysis can be performed in the temporal or spectral domain
 - Examine accelerations *individually*
 - <u>quasisteady</u> (<0.01 Hz): magnitude, orientation, frequency(?), duration (i.e., period > 100 sec?)
 - <u>oscillatory</u>: frequency content, amplitudes, orientation, cutoffs, stationarity
 - *transient*: magnitude, duration, orientation, time delay between transients
 - Examine accelerations together

Transformation
to temporal
domain
$$g_i(t) = g_{qs_{,i}} + \sum_n g_{o,i} \sin(2\pi f_n t) + g_{t_{,i}}(t)$$

Immiscible interfaces

Even large droplets can be spherical in microgravity

In low g, the fluid that preferentially wets the walls will encapsulate the other fluid (to the best of its ability)

The shape of the interface at low g is a function of wetting properties, relative volumes of the fluids, chamber geometry, and **g**

Effect of quasisteady g, g_{qs}

• "Quasisteady" is (somewhat arbitrarily) defined as $f \le 0.01$ Hz

 Primary contributions to quasisteady accelerations are due to *atmospheric drag* (primary variation over an orbital period of 90 minutes) in the direction opposing vehicle motion and *gravity-gradient forces* (~ const if center of mass and experiment location remain the same)

- Researchers must consider *experiment sensitivity* to:
 - **magnitude** of g (upper and lower thresholds) (expect a few μ g on the Shuttle and on the International Space Station)
 - *orientation* of g (expect at least several degrees of variation in orientation over an orbital period)
 - in some cases, an experiment's quasisteady regime may not coincide with this definition and temporal variations must be considered
- Is there a *floor* or *ceiling* for g response in terms of magnitude, orientation and/or frequency?

Effect of g on drops, particles and bubbles

 $\sum \tilde{F} = m\tilde{a}$

 $\Sigma F = B - W \pm D + \dots$

Similarities:

- all are *discrete phases* surrounded by fluid
- all have *buoyant forces* acting on them (weight of displaced fluid)

Differences:

- *different density ratios* w.r.t surrounding fluid (**Drop**: $\rho_d > \rho_f$ **Bubble**: $\rho_b < \rho_f$ **Particle**: $\rho_p < \rho_f$ or $\rho_p > \rho_f$ or $\rho_p = \rho_f$)
- **sign of drag force** will be a function of $(\rho_{l}-\rho_{m})$, *l=b,d,p* (drag opposes direction of motion)
- **response to applied shear and pressure forces** (does it deform?)
- mobility of surface (can there be a velocity jump across the interface?)

<u>Note</u>: surface forces become more important with decreasing radius, acceleration, density variation

For further reading, see the excellent review by Michaelides (1997) and the book by Subramanian and Balasubramanian (2001)

Effect of quasisteady g on particles/bubbles

Polystyrene particles of 200, 400, 600 μ m in triglycerine sulfate on the Shuttle - Sun et al. (1994)

Relevant studies on bubble/particle interaction and space data

<u>Numerical/theoretical</u>: Bunner and Tryggvason (1999, bubbles); Drolet and Viñals (1998, particle/wall); Ellison et al. (1995, particles/wall); Langbein (1991, bubbles)

Experimental: Farris et al. (1998, bubbles); Kawaji et al. (1999, bubble); Ishikawa et al. (1994, bubble/wall); Tryggvason et al. (2001, particles); Trolinger (2000, particles); Ellison et al. (1995, particles); Langbein (1991); Sun et al. (1994, particles)

Theory says: $U_t \sim 2gL^{2/9}v$ in the direction of g (for particles heavier than fluid medium)

Bubble motion in μg

Time (s) Normal component of velocity of air bubbles in silicone oil near a wall on the Shuttle - Ishikawa et al. (1994)

> Theory says: $U_t \sim 2gL^{2/9}v$ in the direction of –g

• In order to predict the discrete phase motion, one can employ:

- creeping flow assumptions
- *finite Reynolds number* approximations

• *semi-empirical* equations (see, e.g., Michaelides, 1997; Subramanian and Balasubramanian, 2001)

• *Slow bubble drift* apparent in Shuttle data, almost certainly in response to quasisteady g (Ishikawa et al.,1994; Farris et al., 1998)

 Analysis of particle/bubble motion is complicated by:

- wall effects and
- *interactions* among bubbles/particles
- lack of correlation to measured acceleration

March 2-4, 2004

QUASISTEADY G

Gravitational effects in cryogenic fuel storage

3 m

Steady uniform heat flux **Development Ground Test** $(Q_T = 2.8 \text{ W})$ at outer wall

 During storage, cryogen vaporization is the main cause of tank pressurization and resultant mass loss

• On earth, pressure is typically controlled by venting, but

 venting vapor in an enclosed spacelab may be hazardous and is wasteful

> <u>GOAL</u>: test a design concept using ventless methods to control pressure through experimental and computational methods

Cryogenic vapor bubble in a 95% full storage tank

- The conduction time scale for this large tank is about 6 days
- Bubble moves opposite to gravity
- It only takes 10 minutes for the bubble to reach the wall, boing, and return to spherical shape
- If g points in one direction for 600 sec or more, buoyancy can move the vapor region up to the "top"

Comparison of 0g and μg temperature maps after 75 days

- μ g exhibits stratified flow; its "hot spots" can lead to increased evaporation
- addition of jet flow at μg can isolate the hot spot that used to be near the bubble

QUASISTEADY G

Effect of Bubble-Generated Convection on 1g and Microgravity Transport Processes

- Three recent NASA microgravity experiments have been hampered by thermocapillary convection caused by unwanted voids and/or bubbles in the melt.
- Finite element analysis shows that *void generated convection can affect radial segregation drastically*, especially, if the thermocapillary vortex penetrates the solutal boundary layer at the growth interface.
- From a transport point of view, *three different regimes* are identified based on the distance between the void and the growth interface.

- Kassemi et al. (2000, 2001)

Newton's 2nd law (conservation of momentum)

March 2-4, 2004

Governing equations for basic natural convection

For basic natural convection for Newtonian fluids with constant properties and no internal sources, we can write conservation of momentum, species and energy (using the Boussinesq approximation) as:

temporal change+convection= diffusion+ source

momentum	$\frac{\partial \tilde{u}}{\partial t} + \tilde{u} \cdot \nabla \tilde{u} = v\Delta \tilde{u} - \frac{1}{\rho_0} \nabla p + \beta \Delta T \tilde{g}$		
energy	$\frac{\partial T}{\partial t} + \tilde{u}\nabla \cdot T = \alpha\Delta T$	Applying scaling analysis to these equations make nondimensional numbers	
species	$\frac{\partial C}{\partial t} + \tilde{u}\nabla \cdot C = D\Delta C$	$\Pr = \frac{v}{\alpha} \qquad Sc = \frac{v}{D}$	
		Prandtl number Schmidt number	

Example: natural convection in a molten semiconductor

Ratio of momentum diffusion to thermal diffusion is small: $Pr = v/\alpha = 0.01$ Ratio of momentum diffusion to species diffusion is large: Sc = v/D = 30

Effect of g magnitude on velocity field

QUASISTEADY G

Effect of quasisteady g orientation on natural convection

Orientation of g can cause different flow modes with increased/decreased convective intensity and variation in far-field mixing

- Arnold et al. (1991)

March 2-4, 2004

Sensitivity of directional solidification to quasisteady g orientation

Variable Gravity Fluid-Structural Behavior of The Heart

- 9000, - 4467, - 4333, - 4300, - 3407, - 3333 - 2000, - 1333, - 1000, - 1333, - 1000, - 1333, - 1000, - 1333, - 1000, - 333, - 335, - 333, - 335, - 355, - 1250 - 1.170 - 1,030 - 0,930 - 0,930 - 0,930 - 0,930 - 0,930 - 0,950 MAXIMUM Δ 2168. MINIMUM ¥ 30.70 ADINA ADINA - 5000. - 4467. - 4467. - 4333. - 4000. - 5333. - 3000. - 1667. - 3333. - 1000. - 1667. - 3333. - 1000. - 667. - 3333. - 46716. MINIMUM # 1322 1250 1170 0990 0990 0720 0540 MAXIMUM A 4045 MINIMUM # 1205

- Deserranno et al. (2003)

Objectives:

QUASISTEADY G Study the intricate variable gravity Fluid-Structural Interactions (FSI) of the heart by element model of the left ventricle, left atrium

developing a state-of-the-art 3D finite and the *mitral valve* in conjunction with animal experiments, 3D MRI cardio-imaging, and clinical case studies.

 Understand how lack of pericardial constraint in space can lead to increase in acute ventricular compliance to pressure and how cardiac atrophy in microgravity can lead to orthostatic intolerance - develop strategy for effective countermeasures.

 Determine the feasibility of using IntraVentricular pressure gradients as markers for early detection of diastolic dysfunction preceding congestive heart failure on earth.

Flow & Stress During 1G Diastolic Expansion of Left Ventricle

Gravitational fluid dynamics of the inner ear

Flow Bending the Cupula Partition during 1g Caloric Test

Objectives:

 Study the fluid-structural interactions (FSI) in the Semi-Circular Canal (SCC) System of the inner-ear under 1g, weightlessness, and artificial gravity conditions of Short Arm Centrifuge

 Recommend countermeasures based on first principal physics to reduce the risk of vestibular disorders arising from exposure to microgravity.

 Delineate the physical mechanisms responsible for common vestibular problems on earth such as Benign Paroxysmal Positional Vertigo or Unilateral Vestibular **Results:**

 Numerical simulations were performed which for the first time *clarified* the fluid physics responsible for the contradicting *results* of the microgravity caloric experiments aboard SkyLab.

- Kassemi et al. (2003)

March 2-4, 2004

Effect of transient g, g_t

TRANSIENT G

- Transient accelerations are of *short duration* by definition (<1 s to several seconds, typically)
- Causes are such things as: thruster firings, hab soars, and crew activity, e.g., hammering
- Effects can *dissipate with distance* from the source
- Researchers must consider effect of:
 - impulse *magnitude* and *duration* (or a combination of the two)
 - orientation of impulse
 - time delay between impulses

Effect of transient impulses

Net acceleration=0, <u>but</u> system reacts in a *transient* manner with finite response time

⇒ Net system response may be nonzero

March 2-4, 2004

TRANSIENT G

March 2-4, 2004

Effect of PRCS thruster burns on directional solidification (MEPHISTO)

Note: Seebeck voltage is proportional to the solid/liquid interface temperature

TRANSIENT G

March 2-4, 2004

Effect of VCRS burns on flame balls (SOFBALL)

March 2-4, 2004

Effect of oscillatory g,

 g_{osc}

• *Rich frequency content* on ISS and Shuttle arising from structural oscillation, crew exercise, equipment operation

• Oscillatory g *will vary from lab to lab* on the ISS; it will depend on the disturbances that are *present* and the *experiment proximity*

- Researchers must consider *experiment sensitivity* to oscillatory g:
 - particular frequencies? Limitations on bulk flows generated from all of the frequency components?
 - amplitude of g (upper and lower thresholds)
 - orientation of g (expected to be highly variable due to variety of sources)
 - crew scheduling?

Experiment response to oscillatory acceleration input

OSCILLATORY G

Body force vs. boundary vibration

In a 2D numerical simulation of particles and liquid in a container with *flexible boundaries*, Ellison et al. (1995) found that transient bulk flows could be generated by Shuttle-type g-jitter. *Particles in the same plane moved in parallel*.

Studying fluid near a boundary, Volfson and Viñals (2001) found that *random vibration of boundaries* can lead to *diffusion layers* that are larger than that of pure sinusoidal vibration.

March 2-4, 2004

Effect of oscillatory acceleration on bubbles

- Ishikawa et al. (1994)

Oscillatory response of a bubble in silicone oil to controlled sinusoidal forcing on the Shuttle

$$x(t) = \frac{6\nu A}{2\pi f} \sin(2\pi ft) - R^2 A \left[\cos(2\pi ft) - \exp\left(-\frac{6\nu}{R^2}t\right) \right]$$

where
$$A = \frac{2R^2 g_{osc}}{36v^2 + R^4 (2\pi f)^2}$$

March 2-4, 2004

• On the Shuttle, 2-5 mm air bubbles were injected into silicone oil and subjected to a controlled sinusoidal oscillation

• Note upward drift due to quasisteady acceleration

• Theoretical and experimental prediction of bubble position are good. Correlation weakens when:

- bubbles are near a *wall*
- *more bubbles* are added to the fluid
- bubble *size increases*
- Ishikawa et al. (1994)
- *Wall effects* on bubble motion, response to oscillatory forcing and to background g were also noted by Farris et al. (1998); also see Kawaji et al. (1999).

Effect of vibration isolation on natural convection

March 2-4, 2004

Effect of vibration isolation on natural convection (cont'd)

March 2-4, 2004

- Nelson and Kassemi (1997)

Initial transient in natural convection in enclosures: Startup of multifrequency sinusoidal disturbance

Concentration variation at solid/liquid interface as a function of time using a simplified spectrum of the Shuttle acceleration environment exhibits startup phenomenon

- Alexander et al. (1991)

Effect of g on tracks of *Euglena gracilis*

Wiggles in clinostat traces are undoubtedly caused by variation in *g* orientation

Modulation in g magnitude should produce correlated *modulation in velocity* for microbes exhibiting gravikinesis

March 2-4, 2004

Conclusions

Space experiments typically occur in a more complicated acceleration environment than that on earth.

• A known, steady acceleration environment is substituted for an acceleration environment that is *not known* a *priori* and varies significantly in terms of *magnitude*, *orientation* and *frequency* content

• More familiar phenomena driven by, e.g., buoyancy-driven convection, are *dominated by less familiar forces*, e.g., surface tension, radiation heat transfer, wall effects, etc.

Nevertheless, there are things we can say with respect to the hydrodynamic effects of the microgravity environment and its effects on continuous fluids with density gradients and embedded discrete phases (bubbles, drops, particles) within fluids

Bibliography

Alexander, J.I.D. "Low-gravity experiment sensitivity to residual acceleration: a review." Microgravity Science and Technology 3:52-68 (1990).

Alexander, J.I.D., J. Ouazzani, and F. Rosenberger. "Analysis of the low gravity tolerance of Bridgman-Stockbarger crystal growth: Part II. Transient and periodic accelerations." J Crystal Growth 97:285-302 (1991).

Alexander, J.I.D., A. Lizee, J.P. Garandet, and J.J. Favier. "Quantitative experimental characterization of g-jitter effects on directional solidification." **AIAA PAPER 97-0675** (1997).

Arnold, W., D. Jacqmin, R. Gaug and A. Chait. "*Three-dimensional flow transport modes in directional solidification during space processing*." **J Spacecraft and Rockets 28**:238-243 (1991).

Bunner, B. and G. Tryggvason. "*Direct numerical simulations of three-dimensional bubbly flows*." **Physics of Fluids 11**: 1967-1969 (1999).

Benjapiyaporn, C., V. Timchenko, E. Leonardi, G. de Vahl Davis and H.C. de Groh III. *"Effects of space environment on flow and concentration during directional solidification."* **International Journal of Fluid Dynamics**, vol 4, article 3 (2000). [http://sibley.mae.cornell.edu/IJFD/2000_vol4/paper3/index.html] Also **NASA TM-2000-209293** (2000).

Casademunt, J., W. Zhang, J. Viñals and R. F. Sekerka. "*Narrow band noise as a model of time-dependent accelerations - Study of the stability of a fluid surface in a microgravity environment.*" **AIAA PAPER 93 0911**(1993).

De Groh, H.C. and E.S. Nelson. "On residual acceleration during space experiments." **ASME HTD-Vol 290**, pp 23-33 (1994).

Demel, K. "*Implications of acceleration environments on scaling materials processing in space to production.*" In *Measurement and characterization of the acceleration environment on board the Space Station*. NASA/MSFC and Teledyne Brown (Aug 11-14, 1986).

Deserranno D, Popovic ZB, Greenberg NL, Kassemi M, Thomas JD. *"Axisymmetric Fluid-Structure Interaction Model of the Left Ventricle."* Second M.I.T. Conference on Computational Fluid and Solid Mechanics (June 2003).

Deserranno D, Popovic ZB, Greenberg NL, Kassemi M, Thomas JD. *"Linear Elastic Axisymmetric Fluid-Structure Interaction Model of the Left Ventricle."* **ASME Journal of Biomech Eng** (2003). (Submitted)

Drolet, F. and J. Viñals. "*Fluid flow induced by a random acceleration field*." **Microgravity Science and Technology 11**:64-68 (1998).

Duval, W. M. B. and D. A. Jacqmin. "Interfacial dynamics of two liquids under an oscillating gravitational field." **AIAA Journal 28**: 1933-1941 (1990).

Ellison, J., G. Ahmadi, L. Regel, and W. Wilcox. "*Particle motion in a liquid under g-jitter excitation*." **Microgravity Science and Technology 8**:140-147 (1995).

Farris, S., K. S. Rezkallah, and J. D. Bugg. "A study on the motion of a bubble subjected to simulated broadband gjitter: Results from a recent shuttle flight." Journal of the Japan Society for Microgravity Applications 15:87-91 (1998).

Favier, J. J., J. P. Garandet, A. Rouzaud and D. Camel. "*Mass transport phenomena during solidification in microgravity; preliminary results of the first Mephisto flight experiment.*" **Journal of Crystal Growth 140**:237-243 (1994).

Favier, J. J. and D. Camel. "Analytical and experimental study of transport processes during directional solidification and crystal growth." **Journal of Crystal Growth 79**:50-64 (1986).

Jenkins, J. and M. Louge. "*Microgravity Segregation of Energetic Grains*." Science Requirements Document, NASA Glenn Research Center (1998).

Ishikawa, M., T. Nakamura, S. Yoda, H. Samejima and T. Goshozono. "*Responsive motion of bubbles to periodic g-jitter.*" **Microgravity Science and Technology 7**:164-168 (1994).

Kawaji, M., N. Ichikawa, A. Kariyasaki and A.B. Tryggvason. *"Large bubble motion in a fluid cell under microgravity: ISCAP experiments on the effects of g-jitter and forced vibration."* **IAF Paper 99-J308** (1999).

Kassemi, M., Kaforey M., and Matthiesen, D., *Effect of Void Generated Thermocapillary Convection on Dopant Segregation in Microgravity Solidification Experiments*, **J. of Thermophysics and Heat Transfer**, Vol. 15, No.2, July, 2001.

Kassemi, M, S. Barsi, M. Kaforey, and D. Matthiesen, *Effect of Void Location on Segregation Patterns in Microgravity Solidification*, **J. Crystal Growth**, Vol. 225, No. 2-4, pp. 516-521, May 2001.

Kassemi, M and N. Rashidnia, *Steady and Oscillatory Thermocapillary Convection Generated by a Bubble*, **Physics of Fluids**, Vol.12, No. 12, pp. 3133-3146, December 2000.

Kassemi, M and J. Oas, A CFD Model for the Caloric Test, Assoc. Res. Otolaryngol Meeting, (Feb 2002).

Kassemi, M and J. Oas, *Fluid Dynamics of Ground-based and Microgravity Caloric Tests,* **Assoc. Res. Otolaryngol Meeting**, (Feb 2003). Also **J. of Vestibular Research**, (Submitted).

Kassemi et al, *Fluid Structural Interactions in the Inner Ear,* **2nd MIT Conference on Comp. Fluids and Solid Mechanics**, Also **J. Computers and Structures** (Submitted)

Langbein, D. "*Motion of ensembles of spherical particles in a fluid due to g-jitter*." Advances in Space Research **11**:189-196 (1991).

Lizee, A. and J. I. D. Alexander. "*Chaotic thermovibrational flow in a laterally heated cavity*." **Physical Review E 56**: 4152-4156 (1997).

Michaelides, E.E. "*Review - The transient equation of motion for particles, bubbles, and droplets.*" Journal of Fluids Engineering 119:233-247 (1997).

Meseguer, J., L.A. Slobozhanin and J. M. Perales. "*A review on the stability of liquid bridges*." Advances in Space **Research 16**:5-7 (1995).

Monti, R. "Gravity jitters: effects on typical fluid science experiments." In J.N. Koster and R.L. Sani, Low-gravity fluid dynamics and transport phenomena. AIAA (1990).

Nelson, E.S. "*An examination of anticipated g-jitter on Space Station and its effects on materials processes.*" **NASA TM 103775** (1991, 1994).

Nelson, E.S. and M. Kassemi. "*The effects of residual acceleration on concentration fields in directional solidification*." **AIAA 97-1002** (1997).

Panzarella, C., M. Kassemi and D. Pachka. Journal of Fluid Mechanics 484:136-148 (2003).

Ronney, P.D., M-S Wu, H.G. Pearlman, and K.J. Weiland. "*Structure of Flame Balls At Low Lewis-number* (*SOFBALL*) - *Preliminary results from the STS-83 and STS-94 space flight experiments*." **AIAA Paper 98-0463** (1998).

Ross, H. D., ed. "Microgravity combustion: fire in free fall." Academic Press (2001).

Subramanian, R.S. and R. Balasubramanian. *"The motion of bubbles and drops in reduced gravity."* Cambridge University Press (2001).

Sun, J., F. M. Carlson, L. L. Regel, W. R. Wilcox, R. B. Lal and J. D. Trolinger. "*Particle motion in the fluid experiment system in microgravity*." Acta Astronautica 34:261-269 (1994).

Tryggvason, B.V., R.F. Redden, R.A. Herring, W.M.B. Duval, R.W. Smith, K.S. Rezkallah, and S. Varma. *"The vibration environment on the International Space Station: Its significance to fluid-based experiments."* **Acta Astronautica 48:**59-70 (2001).

Vogel, K., R. Hemmersbach-Krause, C. Kühnel and D.-P. Häder. "Swimming behavior of the unicellular flagellate, <u>Euglena gracilis</u>, in simulated and real microgravity." **Microgravity Science and Technology 5**:232-237 (1993).

Volfson, D. and J. Viñals. "*Flow induced by a randomly vibrating boundary*." **Journal of Fluid Mechanics 432:**387-408 (2001).